Download Free Artificial Intelligence For Coronavirus Outbreak Book in PDF and EPUB Free Download. You can read online Artificial Intelligence For Coronavirus Outbreak and write the review.

This book examines how the wonders of AI have contributed to the battle against COVID-19. Just as history repeats itself, so do epidemics and pandemics. In the face of the novel coronavirus disease, COVID-19, the book explores whether, in this digital era where artificial intelligence is successfully applied in all areas of industry, we are doing any better than our ancestors did in dealing with pandemics. One of the most contagious diseases ever known, COVID-19 is spreading like wildfire around and has cost thousands of human lives. The book discusses how AI can help fight this deadly virus, from early warnings, prompt emergency responses, and critical decision-making to surveillance drones. Serving as a technical reference resource, data analytic tutorial and a chronicle of the application of AI in epidemics, this book will appeal to academics, students, data scientists, medical practitioners, and anybody who is concerned about this global epidemic.
This book presents a compilation of the most recent implementation of artificial intelligence methods for solving different problems generated by the COVID-19. The problems addressed came from different fields and not only from medicine. The information contained in the book explores different areas of machine and deep learning, advanced image processing, computational intelligence, IoT, robotics and automation, optimization, mathematical modeling, neural networks, information technology, big data, data processing, data mining, and likewise. Moreover, the chapters include the theory and methodologies used to provide an overview of applying these tools to the useful contribution to help to face the emerging disaster. The book is primarily intended for researchers, decision makers, practitioners, and readers interested in these subject matters. The book is useful also as rich case studies and project proposals for postgraduate courses in those specializations.
This book is dedicated to addressing the major challenges in fighting COVID-19 using artificial intelligence (AI) and machine learning (ML) – from cost and complexity to availability and accuracy. The aim of this book is to focus on both the design and implementation of AI-based approaches in proposed COVID-19 solutions that are enabled and supported by sensor networks, cloud computing, and 5G and beyond. This book presents research that contributes to the application of ML techniques to the problem of computer communication-assisted diagnosis of COVID-19 and similar diseases. The authors present the latest theoretical developments, real-world applications, and future perspectives on this topic. This book brings together a broad multidisciplinary community, aiming to integrate ideas, theories, models, and techniques from across different disciplines on intelligent solutions/systems, and to inform how cognitive systems in Next Generation Networks (NGN) should be designed, developed, and evaluated while exchanging and processing critical health information. Targeted readers are from varying disciplines who are interested in implementing the smart planet/environments vision via wireless/wired enabling technologies.
The book aims to outline the issues of AI and COVID-19, involving predictions,medical support decision-making, and possible impact on human life. Starting withmajor COVID-19 issues and challenges, it takes possible AI-based solutions forseveral problems, such as public health surveillance, early (epidemic) prediction,COVID-19 positive case detection, and robotics integration against COVID-19.Beside mathematical modeling, it includes the necessity of changes in innovationsand possible COVID-19 impacts. The book covers a clear understanding of AI-driven tools and techniques, where pattern recognition, anomaly detection, machinelearning, and data analytics are considered. It aims to include the wide range ofaudiences from computer science and engineering to healthcare professionals.
ENABLING HEALTHCARE 4.0 for PANDEMICS The book explores the role and scope of AI, machine learning and other current technologies to handle pandemics. In this timely book, the editors explore the current state of practice in Healthcare 4.0 and provide a roadmap for harnessing artificial intelligence, machine learning, and Internet of Things, as well as other modern cognitive technologies, to aid in dealing with the various aspects of an emergency pandemic outbreak. There is a need to improvise healthcare systems with the intervention of modern computing and data management platforms to increase the reliability of human processes and life expectancy. There is an urgent need to come up with smart IoT-based systems which can aid in the detection, prevention and cure of these pandemics with more precision. There are a lot of challenges to overcome but this book proposes a new approach to organize the technological warfare for tackling future pandemics. In this book, the reader will find: State-of-the-art technological advancements in pandemic management; AI and ML-based identification and forecasting of pandemic spread; Smart IoT-based ecosystem for pandemic scenario. Audience The book will be used by researchers and practitioners in computer science, artificial intelligence, bioinformatics, data scientists, biomedical statisticians, as well as industry professionals in disaster and pandemic management.
This book tackles the recent research directions in using the newly emerged technologies during the era of COVID-19 pandemic. It mainly focuses on using emerging technologies and their impact on health care, education, and society. It also provides insights into the current challenges and constraints in using technologies during the era of COVID-19 pandemic and exposes new opportunities for future research in the domain.
The coronavirus (COVID-19) pandemic is putting healthcare systems across the world under unprecedented and increasing pressure according to theWorld Health Organization (WHO). With the advances in computer algorithms and especially Artificial Intelligence, the detection of this type of virus in the early stages will help in fast recovery and help in releasing the pressure off healthcare systems.
Pandemics are disruptive. Thus, there is a need to prepare and plan actions in advance for identifying, assessing, and responding to such events to manage uncertainty and support sustainable livelihood and wellbeing. A detailed assessment of a continuously evolving situation needs to take place, and several aspects must be brought together and examined before the declaration of a pandemic even happens. Various health organizations; crisis management bodies; and authorities at local, national, and international levels are involved in the management of pandemics. There is no better time to revisit current approaches to cope with these new and unforeseen threats. As countries must strike a fine balance between protecting health, minimizing economic and social disruption, and respecting human rights, there has been an emerging interest in lessons learned and specifically in revisiting past and current pandemic approaches. Such approaches involve strategies and practices from several disciplines and fields including healthcare, management, IT, mathematical modeling, and data science. Using data science to advance in-situ practices and prompt future directions could help alleviate or even prevent human, financial, and environmental compromise, and loss and social interruption via state-of-the-art technologies and frameworks. Data Science Advancements in Pandemic and Outbreak Management demonstrates how strategies and state-of-the-art IT have and/or could be applied to serve as the vehicle to advance pandemic and outbreak management. The chapters will introduce both technical and non-technical details of management strategies and advanced IT, data science, and mathematical modelling and demonstrate their applications and their potential utilization within the identification and management of pandemics and outbreaks. It also prompts revisiting and critically reviewing past and current approaches, identifying good and bad practices, and further developing the area for future adaptation. This book is ideal for data scientists, data analysts, infectious disease experts, researchers studying pandemics and outbreaks, IT, crisis and disaster management, academics, practitioners, government officials, and students interested in applicable theories and practices in data science to mitigate, prepare for, respond to, and recover from future pandemics and outbreaks.
This book covers applications of machine learning in artificial intelligence. The specific topics covered include human language, heterogeneous and streaming data, unmanned systems, neural information processing, marketing and the social sciences, bioinformatics and robotics, etc. It also provides a broad range of techniques that can be successfully applied and adopted in different areas. Accordingly, the book offers an interesting and insightful read for scholars in the areas of computer vision, speech recognition, healthcare, business, marketing, and bioinformatics.
Intelligence-Based Medicine: Data Science, Artificial Intelligence, and Human Cognition in Clinical Medicine and Healthcare provides a multidisciplinary and comprehensive survey of artificial intelligence concepts and methodologies with real life applications in healthcare and medicine. Authored by a senior physician-data scientist, the book presents an intellectual and academic interface between the medical and the data science domains that is symmetric and balanced. The content consists of basic concepts of artificial intelligence and its real-life applications in a myriad of medical areas as well as medical and surgical subspecialties. It brings section summaries to emphasize key concepts delineated in each section; mini-topics authored by world-renowned experts in the respective key areas for their personal perspective; and a compendium of practical resources, such as glossary, references, best articles, and top companies. The goal of the book is to inspire clinicians to embrace the artificial intelligence methodologies as well as to educate data scientists about the medical ecosystem, in order to create a transformational paradigm for healthcare and medicine by using this emerging new technology. - Covers a wide range of relevant topics from cloud computing, intelligent agents, to deep reinforcement learning and internet of everything - Presents the concepts of artificial intelligence and its applications in an easy-to-understand format accessible to clinicians and data scientists - Discusses how artificial intelligence can be utilized in a myriad of subspecialties and imagined of the future - Delineates the necessary elements for successful implementation of artificial intelligence in medicine and healthcare