Download Free Artificial Intelligence Based Hybrid Systems For Financial Forecasting Book in PDF and EPUB Free Download. You can read online Artificial Intelligence Based Hybrid Systems For Financial Forecasting and write the review.

The 4th International Conference on Hybrid Artificial Intelligence Systems (HAIS 2009), as the name suggests, attracted researchers who are involved in developing and applying symbolic and sub-symbolic techniques aimed at the construction of highly robust and reliable problem-solving techniques, and bringing the most relevant achievements in this field. Hybrid intelligent systems have become increasingly po- lar given their capabilities to handle a broad spectrum of real-world complex problems which come with inherent imprecision, uncertainty and vagueness, hi- dimensionality, and nonstationarity. These systems provide us with the opportunity to exploit existing domain knowledge as well as raw data to come up with promising solutions in an effective manner. Being truly multidisciplinary, the series of HAIS conferences offers an interesting research forum to present and discuss the latest th- retical advances and real-world applications in this exciting research field. This volume of Lecture Notes in Artificial Intelligence (LNAI) includes accepted papers presented at HAIS 2009 held at the University of Salamanca, Salamanca, Spain, June 2009. Since its inception, the main aim of the HAIS conferences has been to establish a broad and interdisciplinary forum for hybrid artificial intelligence systems and asso- ated learning paradigms, which are playing increasingly important roles in a large number of application areas.
As technology advancement has increased, so to have computational applications for forecasting, modelling and trading financial markets and information, and practitioners are finding ever more complex solutions to financial challenges. Neural networking is a highly effective, trainable algorithmic approach which emulates certain aspects of human brain functions, and is used extensively in financial forecasting allowing for quick investment decision making. This book presents the most cutting-edge artificial intelligence (AI)/neural networking applications for markets, assets and other areas of finance. Split into four sections, the book first explores time series analysis for forecasting and trading across a range of assets, including derivatives, exchange traded funds, debt and equity instruments. This section will focus on pattern recognition, market timing models, forecasting and trading of financial time series. Section II provides insights into macro and microeconomics and how AI techniques could be used to better understand and predict economic variables. Section III focuses on corporate finance and credit analysis providing an insight into corporate structures and credit, and establishing a relationship between financial statement analysis and the influence of various financial scenarios. Section IV focuses on portfolio management, exploring applications for portfolio theory, asset allocation and optimization. This book also provides some of the latest research in the field of artificial intelligence and finance, and provides in-depth analysis and highly applicable tools and techniques for practitioners and researchers in this field.
An introduction to the theory and methods of empirical asset pricing, integrating classical foundations with recent developments. This book offers a comprehensive advanced introduction to asset pricing, the study of models for the prices and returns of various securities. The focus is empirical, emphasizing how the models relate to the data. The book offers a uniquely integrated treatment, combining classical foundations with more recent developments in the literature and relating some of the material to applications in investment management. It covers the theory of empirical asset pricing, the main empirical methods, and a range of applied topics. The book introduces the theory of empirical asset pricing through three main paradigms: mean variance analysis, stochastic discount factors, and beta pricing models. It describes empirical methods, beginning with the generalized method of moments (GMM) and viewing other methods as special cases of GMM; offers a comprehensive review of fund performance evaluation; and presents selected applied topics, including a substantial chapter on predictability in asset markets that covers predicting the level of returns, volatility and higher moments, and predicting cross-sectional differences in returns. Other chapters cover production-based asset pricing, long-run risk models, the Campbell-Shiller approximation, the debate on covariance versus characteristics, and the relation of volatility to the cross-section of stock returns. An extensive reference section captures the current state of the field. The book is intended for use by graduate students in finance and economics; it can also serve as a reference for professionals.
In clear, readable language, consultant and researcher Kevin Desouza accomplishes an unlikely feat: explaining artificial intelligence to nonspecialists, in a way that experts will recognize and accept as correct and immediately applicable. Workers in knowledge management are relatively isolated from each other, businesspeople are still unconvinced that artificial intelligence has much to offer, and engineers creating the latest algorithm or device seldom consider its value for businesspeople—Desouza seeks to change all that. He maintains that knowledge will be traded like physical goods, and that businesses must leverage knowledge resources within its organizations to survive in a highly competitive marketplace. Introducing us the concepts and significance of knowledge management, he shows that incorporating artificial intelligence computer-based techniques into business settings can provide truly significant gains in productivity. This book is among the first of its kind to provide a comprehensive one-stop guide to the basics of knowledge management, plus a lucid explanation of A.I., and how to use it in almost all types of organizational settings.
This book highlights the recent research on hybrid intelligent systems and their various practical applications. It presents 45 selected papers from the 20th International Conference on Hybrid Intelligent Systems (HIS 2021) and 16 papers from the 17th International Conference on Information Assurance and Security, which was held online, from December 14 to 16, 2021. A premier conference in the field of artificial intelligence and machine learning applications, HIS-IAS 2021 brought together researchers, engineers and practitioners whose work involves intelligent systems, network security and their applications in industry. Including contributions by authors from over 20 countries, the book offers a valuable reference guide for all researchers, students and practitioners in the fields of computer science and engineering.
This book contains the latest scientific work of Ukrainian scientists and their colleagues from other countries of the world in three interrelated areas: systems analysis, artificial intelligence and data mining. The included articles present the theoretical foundations and practical applications of the latest tools and methods of artificial intelligence, scenario planning, decision making and computational intelligence for important areas of human activity. The tools and methods presented in the book are continuously evolving and finding new applications across various fields, contributing to advancements and efficiencies in different industries: healthcare, finance, retail and E-commerce, manufacturing and industrial automation, transportation and logistics advancements and cybersecurity. The results of the book are useful to teachers, scientists, graduate students of universities and managers of large companies specializing in strategic planning, engineering design of complex systems, decision-making, optimization of operations and other related fields of knowledge and practice.
Researchers in the evolving fields of artificial intelligence and information systems are constantly presented with new challenges. Artificial Intelligence and Integrated Intelligent Information Systems: Emerging Technologies and Applications provides both researchers and professionals with the latest knowledge applied to customized logic systems, agent-based approaches to modeling, and human-based models. Artificial Intelligence and Integrated Intelligent Information Systems: Emerging Technologies and Applications presents the recent advances in multi-mobile agent systems, the product development process, fuzzy logic systems, neural networks, and ambient intelligent environments among many other innovations in this exciting field.
As modern technologies continue to develop and evolve, the ability of users to adapt with new systems becomes a paramount concern. Research into new ways for humans to make use of advanced computers and other such technologies through artificial intelligence and computer simulation is necessary to fully realize the potential of tools in the 21st century. Advanced Methodologies and Technologies in Artificial Intelligence, Computer Simulation, and Human-Computer Interaction provides emerging research in advanced trends in robotics, AI, simulation, and human-computer interaction. Readers will learn about the positive applications of artificial intelligence and human-computer interaction in various disciples such as business and medicine. This book is a valuable resource for IT professionals, researchers, computer scientists, and researchers invested in assistive technologies, artificial intelligence, robotics, and computer simulation.
Research in computational intelligence is directed toward building thinking machines and improving our understanding of intelligence. As evident, the ultimate achievement in this field would be to mimic or exceed human cognitive capabilities including reasoning, recognition, creativity, emotions, understanding, learning and so on. In this book, the authors illustrate an hybrid computational intelligence framework and it applications for various problem solving tasks. Based on tree-structure based encoding and the specific function operators, the models can be flexibly constructed and evolved by using simple computational intelligence techniques. The main idea behind this model is the flexible neural tree, which is very adaptive, accurate and efficient. Based on the pre-defined instruction/operator sets, a flexible neural tree model can be created and evolved. This volume comprises of 6 chapters including an introductory chapter giving the fundamental definitions and the last Chapter provides some important research challenges. Academics, scientists as well as engineers engaged in research, development and application of computational intelligence techniques and data mining will find the comprehensive coverage of this book invaluable.