Download Free Artificial Intelligence Applications In Nuclear Energy Book in PDF and EPUB Free Download. You can read online Artificial Intelligence Applications In Nuclear Energy and write the review.

This book presents the main concepts, state of the art, advances, and case studies of fault detection, diagnosis, and prognosis. This topic is a critical variable in industry to reach and maintain competitiveness. Therefore, proper management of the corrective, predictive, and preventive politics in any industry is required. This book complements other subdisciplines such as economics, finance, marketing, decision and risk analysis, engineering, etc. The book presents real case studies in multiple disciplines. It considers the main topics using prognostic and subdiscipline techniques. It is essential to link these topics with the areas of finance, scheduling, resources, downtime, etc. to increase productivity, profitability, maintainability, reliability, safety, and availability, and reduce costs and downtime. Advances in mathematics, modeling, computational techniques, dynamic analysis, etc. are employed analytically. Computational techniques, dynamic analysis, probabilistic methods, and mathematical optimization techniques are expertly blended to support the analysis of prognostic problems with defined constraints and requirements. The book is intended for graduate students and professionals in industrial engineering, business administration, industrial organization, operations management, applied microeconomics, and the decisions sciences, either studying maintenance or needing to solve large, specific, and complex maintenance management problems as part of their jobs. The work will also be of interest to researches from academia.
The artificial intelligence (AI) landscape has evolved significantly from 1950 when Alan Turing first posed the question of whether machines can think. Today, AI is transforming societies and economies. It promises to generate productivity gains, improve well-being and help address global challenges, such as climate change, resource scarcity and health crises.
Applications of AI and IOT in Renewable Energy provides a future vision of unexplored areas and applications for Artificial Intelligence and Internet of Things in sustainable energy systems. The ideas presented in this book are backed up by original, unpublished technical research results covering topics like smart solar energy systems, intelligent dc motors and energy efficiency study of electric vehicles. In all these areas and more, applications of artificial intelligence methods, including artificial neural networks, genetic algorithms, fuzzy logic and a combination of the above in hybrid systems are included. This book is designed to assist with developing low cost, smart and efficient solutions for renewable energy systems and is intended for researchers, academics and industrial communities engaged in the study and performance prediction of renewable energy systems. - Includes future applications of AI and IOT in renewable energy - Based on case studies to give each chapter real-life context - Provides advances in renewable energy using AI and IOT with technical detail and data
eMaintenance: Essential Electronic Tools for Efficiency enables the reader to improve efficiency of operations, maintenance staff, infrastructure managers and system integrators, by accessing a real time computerized system from data to decision. In recent years, the exciting possibilities of eMaintenance have become increasingly recognized as a source of productivity improvement in industry. The seamless linking of systems and equipment to control centres for real time reconfiguring is improving efficiency, reliability, and sustainability in a variety of settings. The book provides an introduction to collecting and processing data from machinery, explains the methods of overcoming the challenges of data collection and processing, and presents tools for data driven condition monitoring and decision making. This is a groundbreaking handbook for those interested in the possibilities of running a plant as a smart asset. - Provides an introduction to collecting and processing data from machinery - Explains how to use sensor-based tools to increase efficiency of diagnosis, prognosis, and decision-making in maintenance - Describes methods for overcoming the challenges of data collection and processing
Applications of Artificial Intelligence in Process Systems Engineering offers a broad perspective on the issues related to artificial intelligence technologies and their applications in chemical and process engineering. The book comprehensively introduces the methodology and applications of AI technologies in process systems engineering, making it an indispensable reference for researchers and students. As chemical processes and systems are usually non-linear and complex, thus making it challenging to apply AI methods and technologies, this book is an ideal resource on emerging areas such as cloud computing, big data, the industrial Internet of Things and deep learning. With process systems engineering's potential to become one of the driving forces for the development of AI technologies, this book covers all the right bases. - Explains the concept of machine learning, deep learning and state-of-the-art intelligent algorithms - Discusses AI-based applications in process modeling and simulation, process integration and optimization, process control, and fault detection and diagnosis - Gives direction to future development trends of AI technologies in chemical and process engineering
Member States intending to introduce a nuclear power programme will need to pass through several phases during the implementation. Experience shows that careful planning of the objectives, roles, responsibilities, interfaces and tasks to be carried out in different phases of a nuclear project is important for success. This publication presents a harmonized approach that may be used to structure the owner/operator management system and establish and manage nuclear projects and their development activities irrespective of the adopted approach. It has been developed from shared management practices and consolidated experiences provided by nuclear project management specialists through a series of workshops and working groups organized by the IAEA. The resultant publication presents a useful framework for the management of nuclear projects from initiation to closeout and captures international best practices.
This book provides a thorough overview of the ongoing evolution in the application of artificial intelligence (AI) within healthcare and radiology, enabling readers to gain a deeper insight into the technological background of AI and the impacts of new and emerging technologies on medical imaging. After an introduction on game changers in radiology, such as deep learning technology, the technological evolution of AI in computing science and medical image computing is described, with explanation of basic principles and the types and subtypes of AI. Subsequent sections address the use of imaging biomarkers, the development and validation of AI applications, and various aspects and issues relating to the growing role of big data in radiology. Diverse real-life clinical applications of AI are then outlined for different body parts, demonstrating their ability to add value to daily radiology practices. The concluding section focuses on the impact of AI on radiology and the implications for radiologists, for example with respect to training. Written by radiologists and IT professionals, the book will be of high value for radiologists, medical/clinical physicists, IT specialists, and imaging informatics professionals.
Composed in honour of the sixty-fifth birthday of Lloyd Shapley, this volume makes accessible the large body of work that has grown out of Shapley's seminal 1953 paper. Each of the twenty essays concerns some aspect of the Shapley value. Three of the chapters are reprints of the 'ancestral' papers: Chapter 2 is Shapley's original 1953 paper defining the value; Chapter 3 is the 1954 paper by Shapley and Shubik applying the value to voting models; and chapter 19 is Shapley's 1969 paper defining a value for games without transferable utility. The other seventeen chapters were contributed especially for this volume. The first chapter introduces the subject and the other essays in the volume, and contains a brief account of a few of Shapley's other major contributions to game theory. The other chapters cover the reformulations, interpretations and generalizations that have been inspired by the Shapley value, and its applications to the study of coalition formulation, to the organization of large markets, to problems of cost allocation, and to the study of games in which utility is not transferable.
As industries are rapidly being digitalized and information is being more heavily stored and transmitted online, the security of information has become a top priority in securing the use of online networks as a safe and effective platform. With the vast and diverse potential of artificial intelligence (AI) applications, it has become easier than ever to identify cyber vulnerabilities, potential threats, and the identification of solutions to these unique problems. The latest tools and technologies for AI applications have untapped potential that conventional systems and human security systems cannot meet, leading AI to be a frontrunner in the fight against malware, cyber-attacks, and various security issues. However, even with the tremendous progress AI has made within the sphere of security, it’s important to understand the impacts, implications, and critical issues and challenges of AI applications along with the many benefits and emerging trends in this essential field of security-based research. Research Anthology on Artificial Intelligence Applications in Security seeks to address the fundamental advancements and technologies being used in AI applications for the security of digital data and information. The included chapters cover a wide range of topics related to AI in security stemming from the development and design of these applications, the latest tools and technologies, as well as the utilization of AI and what challenges and impacts have been discovered along the way. This resource work is a critical exploration of the latest research on security and an overview of how AI has impacted the field and will continue to advance as an essential tool for security, safety, and privacy online. This book is ideally intended for cyber security analysts, computer engineers, IT specialists, practitioners, stakeholders, researchers, academicians, and students interested in AI applications in the realm of security research.