Download Free Artificial Intelligence Applications In Aircraft Systems Book in PDF and EPUB Free Download. You can read online Artificial Intelligence Applications In Aircraft Systems and write the review.

With the emergence of smart technology and automated systems in today’s world, artificial intelligence (AI) is being incorporated into an array of professions. The aviation and aerospace industry, specifically, is a field that has seen the successful implementation of early stages of automation in daily flight operations through flight management systems and autopilot. However, the effectiveness of aviation systems and the provision of flight safety still depend primarily upon the reliability of aviation specialists and human decision making. The Handbook of Research on Artificial Intelligence Applications in the Aviation and Aerospace Industries is a pivotal reference source that explores best practices for AI implementation in aviation to enhance security and the ability to learn, improve, and predict. While highlighting topics such as computer-aided design, automated systems, and human factors, this publication explores the enhancement of global aviation security as well as the methods of modern information systems in the aeronautics industry. This book is ideally designed for pilots, scientists, engineers, aviation operators, air crash investigators, teachers, academicians, researchers, and students seeking current research on the application of AI in the field of aviation.
Applications of Artificial Intelligence in Process Systems Engineering offers a broad perspective on the issues related to artificial intelligence technologies and their applications in chemical and process engineering. The book comprehensively introduces the methodology and applications of AI technologies in process systems engineering, making it an indispensable reference for researchers and students. As chemical processes and systems are usually non-linear and complex, thus making it challenging to apply AI methods and technologies, this book is an ideal resource on emerging areas such as cloud computing, big data, the industrial Internet of Things and deep learning. With process systems engineering's potential to become one of the driving forces for the development of AI technologies, this book covers all the right bases. - Explains the concept of machine learning, deep learning and state-of-the-art intelligent algorithms - Discusses AI-based applications in process modeling and simulation, process integration and optimization, process control, and fault detection and diagnosis - Gives direction to future development trends of AI technologies in chemical and process engineering
Air traffic controllers need advanced information and automated systems to provide a safe environment for everyone traveling by plane. One of the primary challenges in developing training for automated systems is to determine how much a trainee will need to know about the underlying technologies to use automation safely and efficiently. To ensure safety and success, task analysis techniques should be used as the basis of the design for training in automated systems in the aviation and aerospace industries. Automated Systems in the Aviation and Aerospace Industries is a pivotal reference source that provides vital research on the application of underlying technologies used to enforce automation safety and efficiency. While highlighting topics such as expert systems, text mining, and human-machine interface, this publication explores the concept of constructing navigation algorithms, based on the use of video information and the methods of the estimation of the availability and accuracy parameters of satellite navigation. This book is ideal for aviation professionals, researchers, and managers seeking current research on information technology used to reduce the risk involved in aviation.
As with other transportation methods, safety issues in aircraft can result in a total loss of life. Recently, the air transport industry has come under immense scrutiny after several deaths occurred due to aircraft design and airlines that allowed improperly inspected aircraft to fly. Spacecraft too have found errors in system software that could lead to catastrophic failure. It is imperative that the aviation and aerospace industries continue to revise and refine safety protocols from the construction and design of aircraft, to secure and improve aviation systems, and to test and inspect aircraft. The Research Anthology on Reliability and Safety in Aviation Systems, Spacecraft, and Air Transport is a vital reference source that examines the latest scholarly material on the use of adaptive and assistive technologies in aviation to establish clear guidelines for the design and implementation of such technologies to better serve the needs of both military and civilian pilots. It also covers new information technology use in aviation systems to streamline the cybersecurity, decision making, planning, and design processes within the aviation industry. Highlighting a range of topics such as air navigation systems, computer simulation, and airline operations, this multi-volume book is ideally designed for pilots, scientists, engineers, aviation operators, air traffic controllers, air crash investigators, teachers, academicians, researchers, and students.
The development of artificial intelligence (AI) involves the creation of computer systems that can do activities that would ordinarily require human intelligence, such as visual perception, speech recognition, decision making, and language translation. Through increasingly complex programming approaches, it has been transforming and advancing the discipline of computer science. The Handbook of Research on AI Methods and Applications in Computer Engineering illuminates how today’s computer engineers and scientists can use AI in real-world applications. It focuses on a few current and emergent AI applications, allowing a more in-depth discussion of each topic. Covering topics such as biomedical research applications, navigation systems, and search engines, this premier reference source is an excellent resource for computer scientists, computer engineers, IT managers, students and educators of higher education, librarians, researchers, and academicians.
Artificial intelligence is increasingly finding its way into industrial and manufacturing contexts. The prevalence of AI in industry from stock market trading to manufacturing makes it easy to forget how complex artificial intelligence has become. Engineering provides various current and prospective applications of these new and complex artificial intelligence technologies. Applications of Artificial Intelligence in Electrical Engineering is a critical research book that examines the advancing developments in artificial intelligence with a focus on theory and research and their implications. Highlighting a wide range of topics such as evolutionary computing, image processing, and swarm intelligence, this book is essential for engineers, manufacturers, technology developers, IT specialists, managers, academicians, researchers, computer scientists, and students.
Unmanned Aircraft Systems (UAS) are an integral part of the US national critical infrastructure. They must be protected from hostile intent or use to the same level as any other military or commercial asset involved in US national security. However, from the Spratly Islands to Djibouti to heartland America, the expanding Chinese Unmanned Aircraft Systems (UAS / Drone) industry has outpaced the US technologically and numerically on all fronts: military, commercial, and recreational. Both countries found that there were large information security gaps in unmanned systems that could be exploited on the international cyber-security stage. Many of those gaps remain today and are direct threats to US advanced Air Assets if not mitigated upfront by UAS designers and manufacturers. The authors contend that US military / commercial developers of UAS hardware and software must perform cyber risk assessments and mitigations prior to delivery of UAS systems to stay internationally competitive and secure. The authors have endeavored to bring a breadth and quality of information to the reader that is unparalleled in the unclassified sphere. This book will fully immerse and engage the reader in the cyber-security considerations of this rapidly emerging technology that we know as unmanned aircraft systems (UAS). Topics covered include National Airspace (NAS) policy issues, information security, UAS vulnerabilities in key systems (Sense and Avoid / SCADA), collision avoidance systems, stealth design, intelligence, surveillance and reconnaissance (ISR) platforms; weapons systems security; electronic warfare considerations; data-links, jamming operational vulnerabilities and still-emerging political scenarios that affect US military / commercial decisions.
Provides a significant update to the definitive book on aircraft system design This book is written for anyone who wants to understand how industry develops the customer requirement for aircraft into a fully integrated, tested, and qualified product that is safe to fly and fit for purpose. The new edition of Design and Development of Aircraft Systems fully expands its already comprehensive coverage to include both conventional and unmanned systems. It also updates all chapters to bring them in line with current design practice and technologies taught in courses at Cranfield, Bristol, and Loughborough universities in the UK. Design and Development of Aircraft Systems, 3rd Edition begins with an introduction to the subject. It then introduces readers to the aircraft systems (airframe, vehicle, avionic, mission, and ground systems). Following that comes a chapter on the design and development process. Other chapters look at design drivers, systems architectures, systems integration, verification of system requirements, practical considerations, and configuration control. The book finishes with sections that discuss the potential impact of complexity on flight safety, key characteristics of aircraft systems, and more. Provides a holistic view of aircraft system design, describing the interactions among subsystems such as fuel, navigation, flight control, and more Substantially updated coverage of systems engineering, design drivers, systems architectures, systems integration, modelling of systems, practical considerations, and systems examples Incorporates essential new material on the regulatory environment for both manned and unmanned systems Discussion of trends towards complex systems, automation, integration and the potential for an impact on flight safety Design and Development of Aircraft Systems, 3rd Edition is an excellent book for aerospace engineers, researchers, and graduate students involved in the field.
This book addresses many applications of artificial intelligence in robotics, namely AI using visual and motional input. Robotic technology has made significant contributions to daily living, industrial uses, and medicinal applications. Machine learning, in particular, is critical for intelligent robots or unmanned/autonomous systems such as UAVs, UGVs, UUVs, cooperative robots, and so on. Humans are distinguished from animals by capacities such as receiving visual information, adjusting to uncertain circumstances, and making decisions to take action in a complex system. Significant progress has been made in robotics toward human-like intelligence; yet, there are still numerous unresolved issues. Deep learning, reinforcement learning, real-time learning, swarm intelligence, and other developing approaches such as tiny-ML have been developed in recent decades and used in robotics. Artificial intelligence is being integrated into robots in order to develop advanced robotics capable of performing multiple tasks and learning new things with a better perception of the environment, allowing robots to perform critical tasks with human-like vision to detect or recognize various objects. Intelligent robots have been successfully constructed using machine learning and deep learning AI technology. Robotics performance is improving as higher quality, and more precise machine learning processes are used to train computer vision models to recognize different things and carry out operations correctly with the desired outcome. We believe that the increasing demands and challenges offered by real-world robotic applications encourage academic research in both artificial intelligence and robotics. The goal of this book is to bring together scientists, specialists, and engineers from around the world to present and share their most recent research findings and new ideas on artificial intelligence in robotics.