Download Free Artificial Intelligence And Computational Dynamics For Biomedical Research Book in PDF and EPUB Free Download. You can read online Artificial Intelligence And Computational Dynamics For Biomedical Research and write the review.

This work presents the latest development in the field of computational intelligence to advance Big Data and Cloud Computing concerning applications in medical diagnosis. As forum for academia and professionals it covers state-of-the-art research challenges and issues in the digital information & knowledge management and the concerns along with the solutions adopted in these fields.
This work presents the latest development in the field of computational intelligence to advance Big Data and Cloud Computing concerning applications in medical diagnosis. As forum for academia and professionals it covers state-of-the-art research challenges and issues in the digital information & knowledge management and the concerns along with the solutions adopted in these fields.
This volume tackles a quickly-evolving field of inquiry, mapping the existing discourse as part of a general attempt to place current developments in historical context; at the same time, breaking new ground in taking on novel subjects and pursuing fresh approaches. The term "A.I." is used to refer to a broad range of phenomena, from machine learning and data mining to artificial general intelligence. The recent advent of more sophisticated AI systems, which function with partial or full autonomy and are capable of tasks which require learning and 'intelligence', presents difficult ethical questions, and has drawn concerns from many quarters about individual and societal welfare, democratic decision-making, moral agency, and the prevention of harm. This work ranges from explorations of normative constraints on specific applications of machine learning algorithms today-in everyday medical practice, for instance-to reflections on the (potential) status of AI as a form of consciousness with attendant rights and duties and, more generally still, on the conceptual terms and frameworks necessarily to understand tasks requiring intelligence, whether "human" or "A.I."
Handbook of Computational Intelligence in Biomedical Engineering and Healthcare helps readers analyze and conduct advanced research in specialty healthcare applications surrounding oncology, genomics and genetic data, ontologies construction, bio-memetic systems, biomedical electronics, protein structure prediction, and biomedical data analysis. The book provides the reader with a comprehensive guide to advanced computational intelligence, spanning deep learning, fuzzy logic, connectionist systems, evolutionary computation, cellular automata, self-organizing systems, soft computing, and hybrid intelligent systems in biomedical and healthcare applications. Sections focus on important biomedical engineering applications, including biosensors, enzyme immobilization techniques, immuno-assays, and nanomaterials for biosensors and other biomedical techniques. Other sections cover gene-based solutions and applications through computational intelligence techniques and the impact of nonlinear/unstructured data on experimental analysis. - Presents a comprehensive handbook that covers an Introduction to Computational Intelligence in Biomedical Engineering and Healthcare, Computational Intelligence Techniques, and Advanced and Emerging Techniques in Computational Intelligence - Helps readers analyze and do advanced research in specialty healthcare applications - Includes links to websites, videos, articles and other online content to expand and support primary learning objectives
This book introduces the most recent research and innovative developments regarding the new strains of COVID-19. While medical and natural sciences have been working instantly on deriving solutions and trying to protect humankind against such virus types, there is also a great focus on technological developments for improving the mechanism – momentum of science for effective and efficient solutions. At this point, computational intelligence is the most powerful tools for researchers to fight against COVID-19. Thanks to instant data-analyze and predictive techniques by computational intelligence, it is possible to get positive results and introduce revolutionary solutions against related medical diseases. By running capabilities – resources for rising the computational intelligence, technological fields like Artificial Intelligence (with Machine / Deep Learning), Data Mining, Applied Mathematics are essential components for processing data, recognizing patterns, modelling new techniques and improving the advantages of the computational intelligence more. Nowadays, there is a great interest in the application potentials of computational intelligence to be an effective approach for taking humankind more step away, after COVID-19 and before pandemics similar to the COVID-19 many appear.
This book highlights how optimized big data applications can be used for patient monitoring and clinical diagnosis. In fact, IoT-based applications are data-driven and mostly employ modern optimization techniques. The book also explores challenges, opportunities, and future research directions, discussing the stages of data collection and pre-processing, as well as the associated challenges and issues in data handling and setup.
The healthcare industry is increasingly complex, demanding personalized treatments and efficient operational processes. Traditional research methods need help to keep pace with these demands, often leading to inefficiencies and suboptimal outcomes. Integrating digital twin technology presents a promising solution to these challenges, offering a virtual platform for modeling and simulating complex healthcare scenarios. However, the full potential of digital twins still needs to be explored mainly due to a lack of comprehensive guidance and practical insights for researchers and practitioners. Exploring the Advancements and Future Directions of Digital Twins in Healthcare 6.0 is not just a theoretical exploration. It is a practical guide that bridges the gap between theory and practice, offering real-world case studies, best practices, and insights into personalized medicine, real-time patient monitoring, and healthcare process optimization. By equipping you with the knowledge and tools needed to effectively integrate digital twins into your healthcare research and operations, this book is a valuable resource for researchers, academicians, medical practitioners, scientists, and students.
This reference provides a comprehensive overview of computational modelling and simulation for theoretical and practical biomedical research. The book explains basic concepts of computational biology and data modelling for learners and early career researchers. Chapters cover these topics: 1. An introduction to computational tools in biomedical research 2. Computational analysis of biological data 3. Algorithm development for computational modelling and simulation 4. The roles and application of protein modelling in biomedical research 5. Dynamics of biomolecular ligand recognition Key features include a simple, easy-to-understand presentation, detailed explanation of important concepts in computational modeling and simulations and references.
Artificial Intelligence (AI) in Healthcare is more than a comprehensive introduction to artificial intelligence as a tool in the generation and analysis of healthcare data. The book is split into two sections where the first section describes the current healthcare challenges and the rise of AI in this arena. The ten following chapters are written by specialists in each area, covering the whole healthcare ecosystem. First, the AI applications in drug design and drug development are presented followed by its applications in the field of cancer diagnostics, treatment and medical imaging. Subsequently, the application of AI in medical devices and surgery are covered as well as remote patient monitoring. Finally, the book dives into the topics of security, privacy, information sharing, health insurances and legal aspects of AI in healthcare. - Highlights different data techniques in healthcare data analysis, including machine learning and data mining - Illustrates different applications and challenges across the design, implementation and management of intelligent systems and healthcare data networks - Includes applications and case studies across all areas of AI in healthcare data
Artificial Intelligence in the Age of Neural Networks and Brain Computing, Second Edition demonstrates that present disruptive implications and applications of AI is a development of the unique attributes of neural networks, mainly machine learning, distributed architectures, massive parallel processing, black-box inference, intrinsic nonlinearity, and smart autonomous search engines. The book covers the major basic ideas of "brain-like computing" behind AI, provides a framework to deep learning, and launches novel and intriguing paradigms as possible future alternatives. The present success of AI-based commercial products proposed by top industry leaders, such as Google, IBM, Microsoft, Intel, and Amazon, can be interpreted using the perspective presented in this book by viewing the co-existence of a successful synergism among what is referred to as computational intelligence, natural intelligence, brain computing, and neural engineering. The new edition has been updated to include major new advances in the field, including many new chapters. - Developed from the 30th anniversary of the International Neural Network Society (INNS) and the 2017 International Joint Conference on Neural Networks (IJCNN - Authored by top experts, global field pioneers, and researchers working on cutting-edge applications in signal processing, speech recognition, games, adaptive control and decision-making - Edited by high-level academics and researchers in intelligent systems and neural networks - Includes all new chapters, including topics such as Frontiers in Recurrent Neural Network Research; Big Science, Team Science, Open Science for Neuroscience; A Model-Based Approach for Bridging Scales of Cortical Activity; A Cognitive Architecture for Object Recognition in Video; How Brain Architecture Leads to Abstract Thought; Deep Learning-Based Speech Separation and Advances in AI, Neural Networks