Download Free Array Pattern Optimization Book in PDF and EPUB Free Download. You can read online Array Pattern Optimization and write the review.

Array pattern optimization is a very important and necessary issue in the majority of modern communication systems in a variety of applications such as sonar, radar, navigation, wireless communications, and many other engineering fields. Classical methods for array pattern synthesis have worked mainly with analytical models that are linear, local and, thus, their performances were not optimum. They have always been designed with closed-form mathematical models. Unlike these analytical methods, the global optimization methods with powerful computing tools offer optimum solutions. During the last few years, the design of the antenna arrays has been a topic of significant research activity. This book presents recent advances in the field of array pattern optimization. It is targeted primarily toward students and researchers who want to be exposed to a wide variety of antenna array design and optimization. It includes five chapters as well as the introductory chapter. These five chapters are categorized into five different areas depending on the application. These applications are ordered to address interference suppression, electronic toll collection, mmWave and ultra-wideband, integrated antennas, and educational packages for modeling smart antenna for 5G wireless communications. The book has the advantage of providing a collection of applications that are entirely independent and self-contained; thus, the interested reader can choose any chapter and skip to another without losing continuity.
The need to develop technology and communication necessitates the design of flexible and high-capacity radiating systems in today's communication infrastructure. In this context, antenna arrays are the ideal solution and have been one of the priority research subjects of the science community dealing with electromagnetics from past to present. Optimization of an array may be performed in various ways such as the optimization of excitation, reflector structure, feed network, etc. depending on the array structure. This book is a collection of seven research studies focused on the optimization of array structures in classical phased array or time modulation, including radiator, reflector, feed network, and radiating element optimizations.
The biggest challenge facing many game programmers is completing their game. Most game projects fizzle out, overwhelmed by the complexity of their own code. Game Programming Patterns tackles that exact problem. Based on years of experience in shipped AAA titles, this book collects proven patterns to untangle and optimize your game, organized as independent recipes so you can pick just the patterns you need. You will learn how to write a robust game loop, how to organize your entities using components, and take advantage of the CPUs cache to improve your performance. You'll dive deep into how scripting engines encode behavior, how quadtrees and other spatial partitions optimize your engine, and how other classic design patterns can be used in games.
The book compiles the research works related to smart solutions concept in context to smart energy systems, maintaining electrical grid discipline and resiliency, computational collective intelligence consisted of interaction between smart devices, smart environments and smart interactions, as well as information technology support for such areas. It includes high-quality papers presented in the International Conference on Intelligent Computing Techniques for Smart Energy Systems organized by Manipal University Jaipur. This book will motivate scholars to work in these areas. The book also prophesies their approach to be used for the business and the humanitarian technology development as research proposal to various government organizations for funding approval.
An in-depth treatment of array phenomena and all aspects of phased array analysis and design Phased Array Antennas, Second Edition is a comprehensive reference on the vastly evolving field of array antennas. The Second Edition continues to provide an in-depth evaluation of array phenomena with a new emphasis on developments that have occurred in the field over the past decade. The book offers the same detailed coverage of all practical and theoretical aspects of phased arrays as the first edition, but it now includes: New chapters on array-fed reflector antennas; connected arrays; and reflect arrays and retrodirective arrays Brand-new coverage of artificial magnetic conductors, and Bode matching limitations A clear explanation of the common misunderstanding of scan element pattern measurement, along with appropriate equations In-depth coverage of finite array Gibbsian models, photonic feeding and time delay, waveguide simulators, and beam orthogonality The book is complemented with a multitude of original curves and tables that illustrate how particular behaviors were derived from the author's hundreds of programs developed over the past forty years. Additionally, numerous computer design algorithms and numerical tips are included throughout the book to help aid in readers' comprehension. Phased Array Antennas, Second Edition is an ideal resource for antenna design engineers, radar engineers, PCS engineers, and communications engineers, or any professional who works to develop radar and telecommunications systems. It also serves as a valuable textbook for courses in phased array design and theory at the upper-undergraduate and graduate levels.
This book discusses the latest developments and outlines future trends in the fields of microelectronics, electromagnetics and telecommunication. It includes original research presented at the International Conference on Microelectronics, Electromagnetics and Telecommunication (ICMEET 2019), organized by the Department of ECE, Raghu Institute of Technology, Andhra Pradesh, India. Written by scientists, research scholars and practitioners from leading universities, engineering colleges and R&D institutes around the globe, the papers share the latest breakthroughs in and promising solutions to the most important issues facing today’s society.
The two-volume Proceedings set CCIS 1637 and 1638 constitutes the refereed proceedings of the Third International Conference on Neural Computing for Advanced Applications, NCAA 2022, held in Jinan, China, during July 8–10, 2022. The 77 papers included in these proceedings were carefully reviewed and selected from 205 submissions. These papers were categorized into 10 technical tracks, i.e., neural network theory, and cognitive sciences, machine learning, data mining, data security & privacy protection, and data-driven applications, computational intelligence, nature-inspired optimizers, and their engineering applications, cloud/edge/fog computing, the Internet of Things/Vehicles (IoT/IoV), and their system optimization, control systems, network synchronization, system integration, and industrial artificial intelligence, fuzzy logic, neuro-fuzzy systems, decision making, and their applications in management sciences, computer vision, image processing, and their industrial applications, natural language processing, machine translation, knowledge graphs, and their applications, Neural computing-based fault diagnosis, fault forecasting, prognostic management, and system modeling, and Spreading dynamics, forecasting, and other intelligent techniques against coronavirus disease (COVID-19).
This completely revised third edition of an Artech House classic, Phased Array Antenna Handbook, Second Edition, offers an up-to-date and comprehensive treatment of array antennas and systems. This edition provides a wealth of new material, including expanded coverage of phased array and multiple beam antennas. New modern machine learning techniques used for analysis are included. Additional material on wideband antennas and wideband coverage in array antennas are incorporated in this book, including new methods, devices, and technologies that have developed since the second edition. A detailed treatment of antenna system noise, sections on antenna pattern synthesis, developments in subarray technology, and in-depth coverage of array architecture and components are additional new features of this book. The book explores design elements that demonstrate how to size an array system with speed and confidence. Moreover, this resource provides expanded coverage of systems aspects of arrays for radar and communications. Supported with numerous equations and illustrations, this practical book helps evaluate basic antenna parameters such as gain, sidelobe levels, and noise. Readers learn how to compute antenna system noise, design subarray geometries for given bandwidth, scan and sidelobe constraints, and choose array illumination tapers for given sidelobe levels.
This book constitutes the thoroughly refereed post-conference proceedings of the 4th International Conference on Computing and Network Communications (CoCoNet'20), October 14–17, 2020, Chennai, India. The papers presented were carefully reviewed and selected from several initial submissions. The papers are organized in topical sections on Signal, Image and Speech Processing, Wireless and Mobile Communication, Internet of Things, Cloud and Edge Computing, Distributed Systems, Machine Intelligence, Data Analytics, Cybersecurity, Artificial Intelligence and Cognitive Computing and Circuits and Systems. The book is directed to the researchers and scientists engaged in various fields of computing and network communication domains.
This book highlights the application of active array antennas in high-resolution microwave imaging radar systems. It introduces the basic principles, analytical methods, and performance parameters of active array antennas to achieve low profile, high efficiency, and lightweight. The book systematically elaborates the architecture, analysis, and engineering practice to achieve wideband, multi-band, multi-polarization, and common aperture in active array antennas. It explores hotspot technologies of digital array antennas, microwave photonic array antennas, and active packaging antennas. By presenting over 300 illustrations and diagrams, including schematic diagrams, block diagrams, relation diagrams, and breakdown drawings, the book enables a thorough understanding of the antenna array microsystem as the advanced phase of active array antennas and the direction of future R&D. The book is a good reference source for researchers and engineers interested in the engineering and implementation of microwave imaging radar systems and antenna technology.