Download Free Arnold Swimming Against The Tide Book in PDF and EPUB Free Download. You can read online Arnold Swimming Against The Tide and write the review.

Vladimir Arnold, an eminent mathematician of our time, is known both for his mathematical results, which are many and prominent, and for his strong opinions, often expressed in an uncompromising and provoking manner. His dictum that "Mathematics is a part of physics where experiments are cheap" is well known. This book consists of two parts: selected articles by and an interview with Vladimir Arnold, and a collection of articles about him written by his friends, colleagues, and students. The book is generously illustrated by a large collection of photographs, some never before published. The book presents many a facet of this extraordinary mathematician and man, from his mathematical discoveries to his daredevil outdoor adventures.
The first monograph to treat topological, group-theoretic, and geometric problems of ideal hydrodynamics and magnetohydrodynamics from a unified point of view. It describes the necessary preliminary notions both in hydrodynamics and pure mathematics with numerous examples and figures. The book is accessible to graduates as well as pure and applied mathematicians working in hydrodynamics, Lie groups, dynamical systems, and differential geometry.
A true story about one man's stand for justice and freedom helped by his one true love, Rachel. Livesey Luke, son of a builder rises to become an eminent judge and Chief Justice against the background of political independence, and the harsh realities of one party states and corrupt governments that follow. An exciting and dramatic novel told against a quaint tropical background.
INTRODUCTION TO ARNOLD’S PROOF OF THE KOLMOGOROV–ARNOLD–MOSER THEOREM This book provides an accessible step-by-step account of Arnold’s classical proof of the Kolmogorov–Arnold–Moser (KAM) Theorem. It begins with a general background of the theorem, proves the famous Liouville–Arnold theorem for integrable systems and introduces Kneser’s tori in four-dimensional phase space. It then introduces and discusses the ideas and techniques used in Arnold’s proof, before the second half of the book walks the reader through a detailed account of Arnold’s proof with all the required steps. It will be a useful guide for advanced students of mathematical physics, in addition to researchers and professionals. Features • Applies concepts and theorems from real and complex analysis (e.g., Fourier series and implicit function theorem) and topology in the framework of this key theorem from mathematical physics. • Covers all aspects of Arnold’s proof, including those often left out in more general or simplifi ed presentations. • Discusses in detail the ideas used in the proof of the KAM theorem and puts them in historical context (e.g., mapping degree from algebraic topology).
The year's finest writing on mathematics from around the world This annual anthology brings together the year's finest mathematics writing from around the world. Featuring promising new voices alongside some of the foremost names in the field, The Best Writing on Mathematics 2015 makes available to a wide audience many articles not easily found anywhere else—and you don’t need to be a mathematician to enjoy them. These writings offer surprising insights into the nature, meaning, and practice of mathematics today. They delve into the history, philosophy, teaching, and everyday occurrences of math, and take readers behind the scenes of today’s hottest mathematical debates. Here David Hand explains why we should actually expect unlikely coincidences to happen; Arthur Benjamin and Ethan Brown unveil techniques for improvising custom-made magic number squares; Dana Mackenzie describes how mathematicians are making essential contributions to the development of synthetic biology; Steven Strogatz tells us why it’s worth writing about math for people who are alienated from it; Lisa Rougetet traces the earliest written descriptions of Nim, a popular game of mathematical strategy; Scott Aaronson looks at the unexpected implications of testing numbers for randomness; and much, much more. In addition to presenting the year’s most memorable writings on mathematics, this must-have anthology includes a bibliography of other notable writings and an introduction by the editor, Mircea Pitici. This book belongs on the shelf of anyone interested in where math has taken us—and where it is headed.
Can we coexist with the other life forms that have evolved on this planet? Are there realistic alternatives to fossil fuels that would sustainably provide for human society's energy needs and have fewer harmful effects? How do we deal with threats such as emergent diseases? Mathematical models—equations of various sorts capturing relationships between variables involved in a complex situation—are fundamental for understanding the potential consequences of choices we make. Extracting insights from the vast amounts of data we are able to collect requires analysis methods and statistical reasoning. This book on elementary topics in mathematical modeling and data analysis is intended for an undergraduate “liberal arts mathematics”-type course but with a specific focus on environmental applications. It is suitable for introductory courses with no prerequisites beyond high school mathematics. A great variety of exercises extends the discussions of the main text to new situations and/or introduces new real-world examples. Every chapter ends with a section of problems, as well as with an extended chapter project which often involves substantial computing work either in spreadsheet software or in the R statistical package.
Divisors and Sandpiles provides an introduction to the combinatorial theory of chip-firing on finite graphs. Part 1 motivates the study of the discrete Laplacian by introducing the dollar game. The resulting theory of divisors on graphs runs in close parallel to the geometric theory of divisors on Riemann surfaces, and Part 1 culminates in a full exposition of the graph-theoretic Riemann-Roch theorem due to M. Baker and S. Norine. The text leverages the reader's understanding of the discrete story to provide a brief overview of the classical theory of Riemann surfaces. Part 2 focuses on sandpiles, which are toy models of physical systems with dynamics controlled by the discrete Laplacian of the underlying graph. The text provides a careful introduction to the sandpile group and the abelian sandpile model, leading ultimately to L. Levine's threshold density theorem for the fixed-energy sandpile Markov chain. In a precise sense, the theory of sandpiles is dual to the theory of divisors, and there are many beautiful connections between the first two parts of the book. Part 3 addresses various topics connecting the theory of chip-firing to other areas of mathematics, including the matrix-tree theorem, harmonic morphisms, parking functions, M-matrices, matroids, the Tutte polynomial, and simplicial homology. The text is suitable for advanced undergraduates and beginning graduate students.
Richard Stanley's work in combinatorics revolutionized and reshaped the subject. His lectures, papers, and books inspired a generation of researchers. In this volume, these researchers explain how Stanley's vision and insights influenced and guided their own perspectives on the subject. As a valuable bonus, this book contains a collection of Stanley's short comments on each of his papers. This book may serve as an introduction to several different threads of ongoing research in combinatorics as well as giving historical perspective.
This is a handbook containing all the advice and recommendations about learning physics I wished someone had told me when I was younger. It is neither a career guide nor a comprehensive textbook. What’s inside? - Understand why self-learning is an effective strategy. Learn why most university students never develop a deep understanding and what alternatives are possible. - Grasp the internal structure of physics. Learn how the fundamental theories of physics are connected and why physics works at all. - Develop an understanding of the landscape. Read bird's eye overviews that give a first taste of what the various theories of physics are all about. - Everything you need to get started. Read detailed reading and learning recommendations that allow you to carve out a personal learning path.
A Dingo Ate My Math Book presents ingenious, unusual, and beautiful nuggets of mathematics with a distinctly Australian flavor. It focuses, for example, on Australians' love of sports and gambling, and on Melbourne's iconic, mathematically inspired architecture. Written in a playful and humorous style, the book offers mathematical entertainment as well as a glimpse of Australian culture for the mathematically curious of all ages. This collection of engaging stories was extracted from the Maths Masters column that ran from 2007 to 2014 in Australia's Age newspaper. The maths masters in question are Burkard Polster and Marty Ross, two (immigrant) Aussie mathematicians, who each week would write about math in the news, providing a new look at old favorites, mathematical history, quirks of school mathematics—whatever took their fancy. All articles were written for a very general audience, with the intention of being as inviting as possible and assuming a minimum of mathematical background.