Download Free Arithmeticity In The Theory Of Automorphic Forms Book in PDF and EPUB Free Download. You can read online Arithmeticity In The Theory Of Automorphic Forms and write the review.

Written by one of the leading experts, venerable grandmasters, and most active contributors $\ldots$ in the arithmetic theory of automorphic forms $\ldots$ the new material included here is mainly the outcome of his extensive work $\ldots$ over the last eight years $\ldots$ a very careful, detailed introduction to the subject $\ldots$ this monograph is an important, comprehensively written and profound treatise on some recent achievements in the theory. --Zentralblatt MATH The main objects of study in this book are Eisenstein series and zeta functions associated with Hecke eigenforms on symplectic and unitary groups. After preliminaries--including a section, ``Notation and Terminology''--the first part of the book deals with automorphic forms on such groups. In particular, their rationality over a number field is defined and discussed in connection with the group action; also the reciprocity law for the values of automorphic functions at CM-points is proved. Next, certain differential operators that raise the weight are investigated in higher dimension. The notion of nearly holomorphic functions is introduced, and their arithmeticity is defined. As applications of these, the arithmeticity of the critical values of zeta functions and Eisenstein series is proved. Though the arithmeticity is given as the ultimate main result, the book discusses many basic problems that arise in number-theoretical investigations of automorphic forms but that cannot be found in expository forms. Examples of this include the space of automorphic forms spanned by cusp forms and certain Eisenstein series, transformation formulas of theta series, estimate of the Fourier coefficients of modular forms, and modular forms of half-integral weight. All these are treated in higher-dimensional cases. The volume concludes with an Appendix and an Index. The book will be of interest to graduate students and researchers in the field of zeta functions and modular forms.
The theory of automorphic forms has seen dramatic developments in recent years. In particular, important instances of Langlands functoriality have been established. This volume presents three weeks of lectures from the IAS/Park City Mathematics Institute Summer School on automorphic forms and their applications. It addresses some of the general aspects of automorphic forms, as well as certain recent advances in the field. The book starts with the lectures of Borel on the basic theory of automorphic forms, which lay the foundation for the lectures by Cogdell and Shahidi on converse theorems and the Langlands-Shahidi method, as well as those by Clozel and Li on the Ramanujan conjectures and graphs. The analytic theory of GL(2)-forms and $L$-functions are the subject of Michel's lectures, while Terras covers arithmetic quantum chaos. The volume also includes a chapter by Vogan on isolated unitary representations, which is related to the lectures by Clozel. This volume is recommended for independent study or an advanced topics course. It is suitable for graduate students and researchers interested in automorphic forms and number theory. the Institute for Advanced Study/Park City Mathematics Institute. Members of the Mathematical Association of America (MAA) and the National Council of Teachers of Mathematics (NCTM) receive a 20% discount from list price.
The theory of automorphic forms is playing increasingly important roles in several branches of mathematics, even in physics, and is almost ubiquitous in number theory. This book introduces the reader to the subject and in particular to elliptic modular forms with emphasis on their number-theoretical aspects. After two chapters geared toward elementary levels, there follows a detailed treatment of the theory of Hecke operators, which associate zeta functions to modular forms. At a more advanced level, complex multiplication of elliptic curves and abelian varieties is discussed. The main question is the construction of abelian extensions of certain algebraic number fields, which is traditionally called "Hilbert's twelfth problem." Another advanced topic is the determination of the zeta function of an algebraic curve uniformized by modular functions, which supplies an indispensable background for the recent proof of Fermat's last theorem by Wiles.
This volume investigates the interplay between the classical theory of automorphic forms and the modern theory of representations of adele groups. Interpreting important recent contributions of Jacquet and Langlands, the author presents new and previously inaccessible results, and systematically develops explicit consequences and connections with the classical theory. The underlying theme is the decomposition of the regular representation of the adele group of GL(2). A detailed proof of the celebrated trace formula of Selberg is included, with a discussion of the possible range of applicability of this formula. Throughout the work the author emphasizes new examples and problems that remain open within the general theory. TABLE OF CONTENTS: 1. The Classical Theory 2. Automorphic Forms and the Decomposition of L2(PSL(2,R) 3. Automorphic Forms as Functions on the Adele Group of GL(2) 4. The Representations of GL(2) over Local and Global Fields 5. Cusp Forms and Representations of the Adele Group of GL(2) 6. Hecke Theory for GL(2) 7. The Construction of a Special Class of Automorphic Forms 8. Eisenstein Series and the Continuous Spectrum 9. The Trace Formula for GL(2) 10. Automorphic Forms on a Quaternion Algebr?
This volume investigates the interplay between the classical theory of automorphic forms and the modern theory of representations of adele groups. Interpreting important recent contributions of Jacquet and Langlands, the author presents new and previously inaccessible results, and systematically develops explicit consequences and connections with the classical theory. The underlying theme is the decomposition of the regular representation of the adele group of GL(2). A detailed proof of the celebrated trace formula of Selberg is included, with a discussion of the possible range of applicability of this formula. Throughout the work the author emphasizes new examples and problems that remain open within the general theory. TABLE OF CONTENTS: 1. The Classical Theory 2. Automorphic Forms and the Decomposition of L2(PSL(2,R) 3. Automorphic Forms as Functions on the Adele Group of GL(2) 4. The Representations of GL(2) over Local and Global Fields 5. Cusp Forms and Representations of the Adele Group of GL(2) 6. Hecke Theory for GL(2) 7. The Construction of a Special Class of Automorphic Forms 8. Eisenstein Series and the Continuous Spectrum 9. The Trace Formula for GL(2) 10. Automorphic Forms on a Quaternion Algebr?
Automorphic forms are an important complex analytic tool in number theory and modern arithmetic geometry. They played for example a vital role in Andrew Wiles's proof of Fermat's Last Theorem. This text provides a concise introduction to the world of automorphic forms using two approaches: the classic elementary theory and the modern point of view of adeles and representation theory. The reader will learn the important aims and results of the theory by focussing on its essential aspects and restricting it to the 'base field' of rational numbers. Students interested for example in arithmetic geometry or number theory will find that this book provides an optimal and easily accessible introduction into this topic.
In this book, the author writes freely and often humorously about his life, beginning with his earliest childhood days. He describes his survival of American bombing raids when he was a teenager in Japan, his emergence as a researcher in a post-war university system that was seriously deficient, and his life as a mature mathematician in Princeton and in the international academic community. Every page of this memoir contains personal observations and striking stories. Such luminaries as Chevalley, Oppenheimer, Siegel, and Weil figure prominently in its anecdotes. Goro Shimura is Professor Emeritus of Mathematics at Princeton University. In 1996, he received the Leroy P. Steele Prize for Lifetime Achievement from the American Mathematical Society. He is the author of Elementary Dirichlet Series and Modular Forms (Springer 2007), Arithmeticity in the Theory of Automorphic Forms (AMS 2000), and Introduction to the Arithmetic Theory of Automorphic Functions (Princeton University Press 1971).
This is an advanced book on modular forms. While there are many books published about modular forms, they are written at an elementary level, and not so interesting from the viewpoint of a reader who already knows the basics. This book offers something new, which may satisfy the desire of such a reader. However, we state every definition and every essential fact concerning classical modular forms of one variable. One of the principal new features of this book is the theory of modular forms of half-integral weight, another being the discussion of theta functions and Eisenstein series of holomorphic and nonholomorphic types. Thus the book is presented so that the reader can learn such theories systematically.