Download Free Arctic Oceanography Book in PDF and EPUB Free Download. You can read online Arctic Oceanography and write the review.

The Arctic region has long held a fascination for explorers and scientists of many countries. Despite the numerous voyages of exploration, the na ture of the central Arctic was unknown only 90 years ago; it was believed to be a shallow sea dotted with islands. During Nansen's historic voyage on the polarship Fram, which commenced in 1893, the great depth of the central basin was discovered. In the Soviet Union, investigation of the Arctic Ocean became national policy after 1917. Today research at several scientific institutions there is devoted primarily to the study of the North Polar Ocean and seas. The systematic exploration of the Arctic by the United States com menced in 1951. Research has been conducted year-round from drifting ice islands, which are tabular fragments of glacier ice that break away from ice shelves. Most frequently, ice islands originate off the northern coast of Ellesmere Island. These research platforms are occupied as weather sta tions, as well as for oceanographic and geophysical studies. Several inter national projects, conducted by Canadian, European, and U. S. groups, have been underway during the last three decades. Although much new data have accumulated since the publication of the Marine Geology and Oceanography of the Arctic Seas volume in 1974 (Yvonne Herman, ed. ), in various fields of polar research-including present-day ice cover, hydrogra phy, fauna, flora, and geology-many questions remain to be answered.
The Physical Oceanography of the Arctic Mediterranean Sea describes the circulation and the processes in the Arctic Mediterranean, how our present knowledge has developed, and presents recent changes caused by a gradually warmer global climate.The Arctic Mediterranean Sea has been intensively studied in recent years, especially during the fourth International Polar Year, 2007–09, and we have become increasingly aware of the changes presently taking place. This book collects and presents newly acquired knowledge and sets it in perspective to previous studies. Authored by a world-renowned leader in the field, this book explores the role of this small but important sea in the global oceanic circulation and climate—a must-read for researchers and students in the fields of oceanography and climate science. - Relates observed features to active processes and provides sufficient background information to understand the theoretical explanations - Presents the Arctic Mediterranean Sea in the context of global ocean circulation and climate - Presents a modern, comprehensive, and coherent treatment of Arctic (and subarctic) physical oceanography
The book on sea ice ecology is the ecology of sea ice algae and other microorganism as bacteria, meiofauna, and viruses residing inside or at the bottom of the sea ice, called the sympagic biota. Organisms as seals, fish, birds, and Polar bears relies on sea ice but are not part of this biota. A distinct feature of this ecosystem, is the disappearance (melt) every summer and re-establishing in autumn and winter. The book is organized seasonally describing the physical, optical, biological, and geochemical conditions typical of the seasons: autumn, winter, and spring. These are exemplified with case studies based on author’s fieldwork in Greenland, the Arctic Ocean, and Antarctica but focused on Arctic conditions. The sea ice ecosystem is described in the context of climate change, interests, and effects of a decreasing summer ice extent in the Arctic Ocean. The book contains an up to date description of most relevant methods and techniques applied in sea ice ecology research. This book will appeal to university students at Masters or PhD levels reading biology, geosciences, and chemistry.
Following a decision by the Arctic Ocean Sciences Board (AOSB) in July 1996 the then chainnan, Geoffrey Holland, wrote a letter of invitation to a meeting to plan a "Symposium on the Freshwater Balance of the Arctic". The meeting was held in Ottawa on November 12-13 1996 and was attended by representatives of various organisations, including the U.S. National Science Foundation (NSF), as well as individual scientists. Results of this meeting included: • Co-sponsorship with AOSB by the Scientific Committee on Ocean Research (SCOR), the Arctic Climate System Study (ACSYS) and the Global Energy and Water Cycle Experiment (GEWEX). • A decision to apply for funding as a Advanced Research Workshop (ARW) of the North Atlantic Treaty Organisation (NATO) Scientific Affairs Division. • That expenses would be covered in part by funds available through an existing NSF grant to the SCOR Executive offices in Baltimore, MD. • The appointment of myself to be Chairman/Manager for the Symposium. • Provision of a recommended list of Scientific Advisors to assist the Chainnan in selecting key speakers.
Lorsqu'il n'est pas en notre pouvoir de discerner les plus vraies opinions, nous devons suivre les plus pro babies.-Rene Descartes When, in the early 1960's I undertook to covered, due to limitations imposed by a single study Arctic Ocean deep-sea cores, I did not volume. anticipate that 10 years later the climatic history Although not comprehensive, it is hoped that of the north polar basin would be still a matter of this book will provide an insight into the current debate. Although much new data have accumu status of Arctic research and will also serve as a lated in various fields of Arct.
This seminal book results from a NATO Advanced Research Workshop at the University of Cambridge with Russian co-directorship, enabling the first formal dialogue between NATO and Russia about security issues in the Arctic Ocean. Involving interdisciplinary participation with experts from 17 nations, including all of the Arctic states, this workshop itself reflects progress in Arctic cooperation and collaboration. Interests now are awakening globally to take advantage of extensive energy, shipping, fishing and tourism opportunities in the Arctic Ocean as it is being transformed from a permanent sea-ice cap to a seasonally ice-free sea. This environmental state-change is introducing inherent risks of political, economic and cultural instabilities that are centralized among the Arctic states and indigenous peoples with repercussions globally. Responding with urgency, environmental security is presented as an "integrated approach for assessing and responding to the risks as well as the opportunities generated by an environmental state-change." In this book – diverse perspectives on environmental security in the Arctic Ocean are shared in chapters from high-level diplomats, parliamentarians and government officials of Arctic and non-Arctic states; leaders of Arctic indigenous peoples organizations; international law advisors from Arctic states as well as the United Nations; directors of inter-governmental organizations and non-governmental organizations; managers of multi-national corporations; political scientists, historians and economists; along with Earth system scientists and oceanographers. Building on the “common arctic issues” of “sustainable development and environmental protection” established by the Arctic Council – environmental security offers an holistic approach to assess opportunities and risks as well as develop infrastructure responses with law of the sea as the key “international legal framework” to “promote the peaceful uses” of the Arctic Ocean. With vision for future generations, environmental security is a path to balance national interests and common interests in the Arctic Ocean for the lasting benefit of all.
Philip Mladenov provides a comprehensive overview of marine biology, providing a tour of marine life and marine processes that ranges from the polar oceans to tropical coral reefs; and from the intertidal to the hydrothermal vents of the deep sea.
The flux, preservation, and accumulation of organic carbon in marine systems are controlled by various mechanisms including primary p- duction of the surface water, supply of terrigenous organic matter from the surrounding continents, biogeochemical processes in the water column and at the seafloor, and sedimentation rate. For the world's oceans, phytoplankton productivity is by far the largest organic carbon 9 source, estimated to be about 30 to 50 Gt (10 tonnes) per year (Berger et al. 1989; Hedges and Keil 1995). By comparison, rivers contribute -1 about 0. 15 to 0. 23 Gt y of particulate organi.
Only a few centuries ago, we knew very little about our planet Earth. The Earth was considered flat by many although it was postulated by a few like Aristotle that it is spherical based on observations that included the study of lunar eclipses. Much later, Christopher Columbus successfully sailed to the West to discover the New World and Ferdinand Magellan’s ship circumnavigated the globe to prove once and for all that the Earth is indeed a sphere. Worldwide navigation and explorations that followed made it clear that the Earth is huge and rather impossible to study solely by foot or by water. The advent of air travel made it a lot easier to do exploratory studies and enabled the mapping of the boundaries of continents and the oceans. But aircraft coverage was limited and it was not until the satellite era that full c- erage of the Earth’s surface became available. Many of the early satellites were research satellites and that meant in part the development of engineering measurement systems with no definite applications in mind. The Nimbus-5 Electrically Scanning Microwave Radiometer (ESMR) was a classic case in point. The sensor was built with the idea that it may be useful for meteorological research and especially rainfall studies over the oceans, but success in this area of study was very limited.