Download Free Architectural Integration And Design Of Solar Thermal Systems Book in PDF and EPUB Free Download. You can read online Architectural Integration And Design Of Solar Thermal Systems and write the review.

Although solar thermal systems are technologically mature and cost effective, they have not yet been sufficiently used in building design to play an adequate role in the reduction of fossil fuel consumption. One main hindrance to adoption is the generally low architectural design quality of the building integration of these thermal systems. Starting from a definition of architectural integration quality and related criteria, this book is intended to help both architects and manufacturers improve their design work.
It's already impossible to imagine energy-efficient construction without photovoltaics and solar thermal. Yet, the EU-wide introduction of low energy standards for new buildings stipulates that buildings must meet their energy needs in whole or in part from the sun by 2021 at the latest. The integration of solar systems into buildings is no longer just a technical matter, but also a structural and aesthetic challenge. This book provides the necessary expertise for this purpose. In addition to basic physics and technological developments in photovoltaics and solar thermal, the publication offers abundant advice from architects on how to successfully integrate solar systems into buildings. A number of chapters address the economical and ecological deployment of solar technology as well as issues of building laws and the preservation of listed buildings. Illustrated and expanded by numerous photos and detailed project documentation, "Building-Integrated Solar Technology" not only demonstrates the tremendous variety of construction tasks and integration possibilities, but also shows that self-sustaining buildings in terms of energy can also become a powerful architectural and cultural asset.
This book of Proceedings presents the latest thinking and research in the rapidly evolving world of architecture and sustainable development through 255 selected papers by authors coming from over 60 countries.
Both professionals and students are increasingly committed to achieving high-performance metrics in the design, construction and operation of residential buildings. This book responds to this demand by offering a comprehensive guide which features: architectural innovations in building skin technologies which make lighter more transparent buildings high performing; energy-free architectural design principles and advances in building-integrated photovoltaics; essential engineering principles, controls and approaches to simulation for achieving net zero; the advantages of integrated design in residential construction and the challenges and opportunities it engenders; detailed case studies of innovative homes which have incorporated low-energy design solutions, new materials, alternative building assemblies, digital fabrication, integrated engineering systems and operational controls. Divided into four parts, the book discusses the requisite AEC (Architecture, Engineering and Construction) knowledge needed when building a high-performance home. It also communicates this information across four case studies, which provide the reader with a thorough overview of all aspects to be considered in the design and construction of sustainable homes. With contributions from experts in the field, the book provides a well-rounded and multi-faceted approach. This book is essential reading for students and professionals in design, architecture, engineering (civil, mechanical and electrical), construction and energy management.
This book, based on the research experience and outcomes of a group of international contributors, addresses a range of advanced energy efficiency technologies and their applications in solar heating, cooling and power generation, while also providing solutions for tackling recurring low efficiency problems in today’s systems. It highlights the latest technologies and methods, which can significantly improve the performance of solar systems, enabling readers to design, construct and apply high-performance solar systems in or for their own projects. The contributors provide a systematic introduction to state-of-the-art energy efficiency technologies that demonstrates how to implement innovative solar systems. These technologies include: • heat pipes and loop heat pipes; • phase change materials (PCMs) and PCM slurries; • micro-channel panels; • desiccant/adsorption cycling; • ejector cooling and heat pumps; and • solar concentration and thermoelectric units. The book shows how innovative solar systems applicable to rural and urban buildings can be analysed and demonstrates the successful implementation of these advanced technologies. It delivers the design principles and associated energy performance assessment methods for a range of selected solar heating, cooling and power generation projects. This book offers a valuable source of information for final-year undergraduate students, as well as graduate students and academic lecturers, as it promotes the widespread deployment of advanced solar heating, cooling and power generation technologies applicable for buildings across the globe. The book is also a good point of reference for design engineers and energy consultants who wish to extend their knowledge of advanced technologies used to achieve energy efficiency.