Download Free Arbuscular Mycorrhizas And Stress Tolerance Of Plants Book in PDF and EPUB Free Download. You can read online Arbuscular Mycorrhizas And Stress Tolerance Of Plants and write the review.

This book reviews the potential mechanisms in arbuscular mycorrhizas (AMs), in the hope that this can help arbuscular mycorrhizal fungi (AMF) to be more used efficiently as a biostimulant to enhance stress tolerance in the host plants. AMF, as well as plants, are often exposed to all or many of the abiotic and biotic stresses, including extreme temperatures, pH, drought, water-logging, toxic metals and soil pathogens. Studies have indicated a quick response to these stresses involving several mechanisms, such as root morphological modification, reactive oxygen species change, osmotic adjustment, direct absorption of water by extraradical hyphae, up-regulated expression of relevant stressed genes, glomalin-related soil protein release, etc. The underlying complex, multi-dimensional strategy is involved in morphological, physiological, biochemical, and molecular processes. The AMF responses are often associated with homeostatic regulation of the internal and external environment, and are therefore critical for plant health, survival and restoration in native ecosystems and good soil structure.
This book presents state-of-the-art research on the many facets of the plant microbiome, including diversity, ecology, physiology and genomics, as well as molecular mechanisms of plant-microbe interactions. Topics considered include the importance of microbial secondary metabolites in stimulating plant growth, induced systemic resistance, tolerance to abiotic stress, and biological control of plant pathogens. The respective contributions show how microbes help plants to cope with abiotic stresses, and represent significant progress toward understanding the complex regulatory networks critical to host-microbe interaction and plant adaptation in extreme environments. New insights into the mechanisms of microbial actions in inducing plant stress tolerance open new doors for improving the efficacy of microbial strategies, and could produce new ways of economically increasing crop yields without harming the environment. As such, this book offers an essential resource for students and researchers with an interest in plant-microbe interaction, as well as several possibilities for employing the plant microbiome in the enhancement of crop productivity under future climate change scenarios.
The fungal kingdom consists of a wide variety of organisms with a diverse range of forms and functions. Fungi have been utilized for thousands of years and their importance in agriculture, medicine, food production and the environmental sciences is well known. New advances in genomic and metabolomic technologies have allowed further developments in the use of fungi in industry and medicine, increasing the need for a compilation of new applications, developments and technologies across the mycological field. Applied Mycology brings together a range of contributions, highlighting the diverse nature of current research. Chapters include discussions of fungal associations in the environment, agriculture and forestry, long established and novel applications of fungi in fermentation, the use of fungi in the pharmaceutical industry, the growing recognition of fungal infections, current interests in the use fungal enzymes in biotechnology and the new and emerging field of myconanotechnology. Demonstrating the broad coverage and importance of mycological research, this book will be of interest to researchers and students in all biological sciences.
This book, prepared by participants of the European network COST ACTION 810 (1989-93) is the outcome of a meeting held in Switzerland (Einsiedeln, September 29 to October 2, 1993) on the "Impact of arbuscular mycorrhizas on sustainable agriculture and natural ecosystems". COST(Cooperation Scientifique et Technique) Networks were created in 1971 by the Commission of European Communities, and later enlarged to include non-European Member States, to promote pre-competitive scientific and technical research in fields of common interest. During the eighties, COST ACTIONS were launched in bio technological fields, including the network on arbuscular mycorrhizas. Arbuscular mycorrhizas are a universally found symbiosis between plants and certain soil fungi and essential components of soil-plant systems. They act as a major inter face by influencing or regulating resource allocation between abiotic and biotic components of the soil-plant system. Arbuscular mycorrhizas are involved in many key ecosystem processes including nutrient cycling and conservation of soil struc ture, and have been shown to improve plant health through increased protection against abiotic and biotic stresses. Sustainability can be defined as the successful management of resources to satisfy changing human needs while maintaining or enhancing the quality of the environ ment and conserving resources. Increasing environmental degradation and instability, due to anthropogenic activities and in particular the increasing fragility of the soil resource, has led to an increased awareness of the need to develop practices resulting in more sustainable natural and agroecosystems.
A comprehensive, edited volume pulling together research on manipulation of the crop microbiome for climate resilient agriculture Microbes for Climate Resilient Agriculture provides a unique collection of data and a holistic view of the subject with quantitative assessment of how agricultural systems will be transformed in coming decades using hidden treasure of microbes. Authored by leaders in the field and edited to ensure conciseness and clarity, it covers a broad range of agriculturally important crops, discusses the impact of climate change on crops, and examines biotechnologically and environmentally relevant microbes. The book encapsulates the understanding of microbial mediated stress management at field level, and will serve as a springboard for novel research findings and new applications in the field. Chapter coverage includes: the role of the phytomicrobiome in maintaining biofuel crop production in a changing climate; the impact of agriculture on soil microbial community composition and diversity in southeast Asia; climate change impact on plant diseases; microalgae; photosynthetic microorganisms and bioenergy prospects; amelioration of abiotic stresses in plants through multi-faceted beneficial microorganisms; role of methylotrophic bacteria in climate change mitigation; conservation agriculture for climate change resilience; archaeal community structure; mycorrhiza-helping plants to navigate environmental stresses; endophytic microorganisms; bacillus thuringiensis; and microbial nanotechnology for climate resilient agriculture. Clear and succinct chapters contributed and edited by leaders in the field Covers microbes' beneficial and detrimental roles in the microbiome, as well as the functions they perform under stress Discusses the crop microbiome, nutrient cycling microbes, endophytes, mycorrhizae, and various pests and diseases, and their roles in sustainable farming Places research in larger context of climate change's effect on global agriculture Microbes for Climate Resilient Agriculture is an important text for scientists and researchers studying microbiology, biotechnology, environmental biology, agronomy, plant physiology, and plant protection.
Understanding metalloids and the potential impact they can have upon crop success or failure Metalloids have a complex relationship with plant life. Exhibiting a combination of metal and non-metal characteristics, this small group of elements – which includes boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), and tellurium (Te) – may hinder or enhance the growth and survival of crops. The causes underlying the effects that different metalloids may have upon certain plants range from genetic variance to anatomical factors, the complexities of which can pose a challenge to botanists and agriculturalists of all backgrounds. With Metalloids in Plants, a group of leading plant scientists present a complete guide to the beneficial and adverse impacts of metalloids at morphological, anatomical, biochemical, and molecular levels. Insightful analysis of data on genetic regulation helps to inform the optimization of farming, indicating how one may boost the uptake of beneficial metalloids and reduce the influence of toxic ones. Contained within this essential new text, there are: Expert analyses of the role of metalloids in plants, covering their benefits as well as their adverse effects Explanations of the physiological, biochemical, and genetic factors at play in plant uptake of metalloids Outlines of the breeding and genetic engineering techniques involved in the generation of resistant crops Written for students and professionals in the fields of agriculture, botany, molecular biology, and biotechnology, Metalloids in Plants is an invaluable overview of the relationship between crops and these unusual elements.
This book provides a comprehensive overview of the multiple strategies that plants have developed to cope with drought, one of the most severe environmental stresses. Experts in the field present 17 chapters, each of which focuses on a basic concept as well as the latest findings. The following major aspects are covered in the book: · Morphological and anatomical adaptations · Physiological responses · Biochemical and molecular responses · Ecophysiological responses · Responses to drought under field conditions The contributions will serve as an invaluable source of information for researchers and advanced students in the fields of plant sciences, agriculture, ecophysiology, biochemistry and molecular biology.
The mechanisms underlying endurance and adaptation to environmental stress factors in plants have long been the focus of intense research. Plants overcome environmental stresses by development of tolerance, resistance or avoidance mechanisms, adjusting to a gradual change in its environment which allows them to maintain performance across a range of adverse environmental conditions. Plant Acclimation to Environmental Stress presents the latest ideas and trends on induced acclimation of plants to environmental stresses under changing environment. Written by experts around the globe, this volume adds new dimensions in the field of plant acclimation to abiotic stress factors. Comprehensive and lavishly illustrated, Plant Acclimation to Environmental Stress is a state-of-the-art guide suited for scholars and researchers working in the field of crop improvement, genetic engineering and abiotic stress tolerance.
This book puts an updated account on functional aspects of multiphasic microbial interactions within and between plants and their ecosystem. Multipronged interaction in the soil microbial communities with the plants constitute a relay of mechanisms that make profound changes in plant and its micro-environment in the rhizopshere at physiological, biochemical and molecular levels. In agro-ecological perspectives, such interactions are known to recycle nutrients and regulate signalling molecules, phytohormones and other small molecules that help plant growth and development. Such aspects are described deeply in this book taking examples from various crop plants and microbial systems. Authors described the most advantageous prospects of plant-microbe interaction in terms of inoculation of beneficial microorganisms (microbial inoculants) with the plants in which microbes proliferate in the root rhizosphere system and benefit plants' with definite functions like fixation of nitrogen, solubilization and mobilization of P, K, Zn and production of phytohormones. The subject of this book and the content presented herein has great relevance to the agro-ecological sustainability of crop plants with the help of microbial interactions. The chapters presented focus on defining and assessing the impact of beneficial microbial interactions on different soils, crops and abiotic conditions. This volume entails about exploiting beneficial microbial interactions to help plants under abiotic conditions, microbe-mediated induced systemic tolerance, role of mycorrhizal interactions in improving plant tolerance against stresses, PGPR as nutrient mobilizers, phytostimulants, antagonists and biocontrol agents, plant interactions with Trichoderma and other bioagents for sustainable intensification in agriculture, cyanobacteria as PGPRs, plant microbiome for crop management and phytoremediation and rhizoremediation using microbial communities. The overall content entrust advanced knowledge and applicability of diversified biotechnological, techno-commercial and agro-ecological aspects of microbial interactions and inoculants as inputs, which upon inoculation with crop plants benefit them in multiple ways.
Explore an in-depth and insightful collection of resources discussing various aspects of root structure and function in intensive agricultural systems The Root Systems in Sustainable Agricultural Intensification delivers a comprehensive treatment of state-of-the-art concepts in the theoretical and practical aspects of agricultural management to enhance root system architecture and function. The book emphasizes the agricultural measures that enhance root capacity to develop and function under a range of water and nutrient regimes to maximize food, feed, and fibre production, as well as minimize undesirable water and nutrient losses to the environment. This reference includes resources that discuss a variety of soil, plant, agronomy, farming system, breeding, molecular and modelling aspects to the subject. It also discusses strategies and mechanisms that underpin increased water- and nutrient-use efficiency and combines consideration of natural and agricultural systems to show the continuity of traits and mechanisms. Finally, the book explores issues related to the global economy as well as widespread social issues that arise from, or are underpinned by, agricultural intensification. Readers will also benefit from the inclusion of: A thorough introduction to sustainable intensification, including its meaning, the need for the technology, components, and the role of root systems Exploration of the dynamics of root systems in crop and pasture genotypes over the last 100 years Discussion of the interplay between root structure and function with soil microbiome in enhancing efficiency of nitrogen and phosphorus acquisition Evaluation of water uptake in drying soil, including balancing supply and demand Perfect for agronomists, horticulturalists, plant and soil scientists, breeders, and soil microbiologists, The Root Systems in Sustainable Agricultural Intensification will also earn a place in the libraries of advanced undergraduate and postgraduate students in this field who seek a one-stop reference in the area of root structure and function.