Download Free Aquatic And Surface Photochemistry Book in PDF and EPUB Free Download. You can read online Aquatic And Surface Photochemistry and write the review.

Aquatic and Surface Photochemistry provides a broad overview of current research in the emerging field of environmental aquatic and surface photochemistry. Selected reviews and current research articles are blended to provide an in-depth treatment of various aspects of this research area. The first part of the text deals with photochemistry in the environment, covering recent research on the following topics: aquatic photochemistry of organic pollutants and agrochemicals, photochemical cycling of carbon and transition metals (especially iron), photochemical formation of reactive oxygen species in natural waters, photoreaction in cloud and rain droplets, and photoreactions on environmental surfaces (soil, ash, metal, oxide). The second part provides discussions and data on both heterogeneous photocatalytic and homogeneous processes, with topics ranging from applications to mechanistic studies. These chapters illustrate the wide diversity of pollutant classes that are degradable by photochemical techniques and the effects of various reaction conditions on the rates and efficiency of the techniques. Current kinetic studies are presented, which provide new information about the role of adsorption and the nature of the reactive oxidizing species that mediate these photoremediation processes.This book will interest civil, chemical, and environmental engineers, as well as chemists, soil scientists, geochemists, and atmospheric chemists.
Environmental Chemistry is a relatively young science. Interest in this subject, however, is growing very rapidly and, although no agreement has been reached as yet about the exact content and limits of this interdisciplinary discipline, there appears to be increasing interest in seeing environmental topics which are based on chemistry embodied in this subject. One of the first objectives of Environ mental Chemistry must be the study of the environment and of natural chemical processes which occur in the environment. A major purpose of this series on Environmental Chemistry, therefore, is to present a reasonably uniform view of various aspects of the chemistry of the environment and chemical reactions occurring in the environment. The industrial activities of man have given a new dimension to Environ mental Chemistry. We have now synthesized and described over five million chemical compounds and chemical industry produces about hundred and fifty million tons of synthetic chemicals annually. We ship billions of tons of oil per year and through mining operations and other geophysical modifications, large quantities of inorganic and organic materials are released from their natural deposits. Cities and metropolitan areas of up to 15 million inhabitants produce large quantities of waste in relatively small and confined areas. Much of the chemical products and waste products of modern society are released into the environment either during production, storage, transport, use or ultimate disposal. These released materials participate in natural cycles and reactions and frequently lead to interference and disturbance of natural systems.
Humic substances occur in all kinds of aquatic systems, but are particularly important in northern, coniferous areas. They strongly modify the aquatic ecosystems and also constitute a major problem in the drinking water supply. This volume covers all aspects of aquatic humic substances, from their origin and chemical properties, their effects on light and nutrient regimes and biogeochemical cycling, to their role regarding organisms, productivity and food web organization from bacteria to fish. Special emphasis is paid to carbon cycling and food web organization in humic lakes, but aspects of marine carbon cycling related to humus are treated as well.
Chemical Degradation Methods for Wastes and Pollutants focuses on established and emerging chemical procedures for the management of pollutants in industrial wastewater and the environment. This reference offers an in-depth explanation of the degradation process, mechanisms, and control factors affecting each method, as well as issues crucial to th
Focusing on complex naturally-occurring and synthetic supramolecular arrays, this work describes the mechanism by which transition metal complexes bind to DNA and how the DNA scaffold modifies the photochemical and photophysical properties to bound complexes. It includes details of photoinduced electron transfer between intercalated molecules, and examines thermally and photochemically induced electron transfer in supramolecular assemblies consisting of inorganic molecular building blocks.
While the treatment of water and exhaust gas using ultraviolet (UV) light offers both ecological and economic advantages, information on photo-initiated advanced oxidation technologies (AOTs) has been dispersed among various journals and proceedings until now. This authoritative and comprehensive handbook is the first to cover both the photochemical fundamentals and practical applications, including a description of advanced oxidation processes (AOPs) and process engineering of suitable photoreactors. The author presents various real-world examples, including economic aspects, while many references to current scientific literature facilitate access to current research topics relevant for water and air industries. Throughout, over 140 detailed figures visualize photochemical and photophysical phenomena, and help in interpreting important research results. From the foreword by James R. Bolton (President of Bolton Photosciences Inc., Executive Director of the International Ultraviolet Association (IUVA)): "Prof. Oppenländer is well qualified to write about the AOPs/AOTs, since he has contributed to this literature in a very significant manner. This book will be of considerable value to graduate students, science and engineering faculty, scientists, process engineers and sales engineers in industry, government regulators and health professionals."
The carbon dioxide absorption and gas exchange at the sea surface, marine aerosols and their photochemistry, the oceanic carbon cycle as well as biomarkers in marine ecosystems, and related topics are of primary importance for understanding our global ecosystem. The topics addressed in this volume are all stemming from areas which have developed only in the last ten years of research or which have gone into decidedly new directions in that time. In most cases, the recent research has been driven by advances in instrumentation or by large-scale international cooperations. Thus this volume is also aiming at interdisciplinary and international cooperations in the future.
This comprehensive contributed volume presents an account of current research and applications of chemical processes occurring at the interfaces of water with naturally occuring solids. Interactions of solutes with the solid surfaces are looked at from a mechanistic and dynamic point of view rather than a descriptive one. Processes discussed and concepts presented are applicable to all natural waters (oceans and fresh waters as well as soil and sediment water systems) and to the surfaces of natural solids such as minerals, soils, sediments, biota, and humus. Chapters progress from theoretical models and laboratory studies to applications in natural water, soil, and geochemical systems, emphasizing those processes that regulate the distribution and concentration of elements and compounds. Topics covered include adsorption mechanisms in aquatic surface chemistry, the electric double layer at the solid-solution interface, aspects of molecular structure in surface complexes: spectroscopic investigations, interpretation of metal complexation by heterogeneous complexants, the role of colloids in the partitioning of solutes in natural waters, and 'from molecules to planetary environments': understanding global change.
The suitability of Advanced Oxidation Processes (AOPs) for pollutant degradation was recognised in the early 1970s and much research and development work has been undertaken to commercialise some of these processes. AOPs have shown great potential in treating pollutants at both low and high concentrations and have found applications as diverse as ground water treatment, municipal wastewater sludge destruction and VOCs control. Advanced Oxidation Processes for Water and Wastewater Treatment is an overview of the advanced oxidation processes currently used or proposed for the remediation of water, wastewater, odours and sludge. The book contains two opening chapters which present introductions to advanced oxidation processes and a background to UV photolysis, seven chapters focusing on individual advanced oxidation processes and, finally, three chapters concentrating on selected applications of advanced oxidation processes. Advanced Oxidation Processes for Water and Wastewater Treatment will be invaluable to readers interested in water and wastewater treatment processes, including professionals and suppliers, as well as students and academics studying in this area. Dr Simon Parsons is a Senior Lecturer in Water Sciences at Cranfield University with ten years' experience of industrial and academic research and development.