Download Free Approximation Of The Bias Of The Least Squares Estimator Of Sigma2 In The Case Of A First Order Autoregressive Process And Two Correlated Predictors Book in PDF and EPUB Free Download. You can read online Approximation Of The Bias Of The Least Squares Estimator Of Sigma2 In The Case Of A First Order Autoregressive Process And Two Correlated Predictors and write the review.

An extensive literature in econometrics focuses on finding the exact and approximate first and second moments of the least-squares estimator in the stable first-order linear autoregressive model with normally distributed errors. Recently, Kiviet and Phillips (2005) developed approximate moments for the linear autoregressive model with a unit root and normally distributed errors. An objective of this paper is to analyze moments of the estimator in the first-order autoregressive model with a unit root and nonnormal errors. In particular, we develop new analytical approximations for the first two moments in terms of model parameters and the distribution parameters. Through Monte Carlo simulations, we find that our approximate formula perform quite well across different distribution specifications in small samples. However, when the noise to signal ratio is huge, bias distortion can be quite substantial, and our approximations do not fare well.
I derive the approximate bias and mean squared error of the least squares estimator of the autoregressive coefficient in a stationary first-order dynamic regression model, with or without an intercept, under a general error distribution. It is shown that the effects of nonnormality on the approximate moments of the least squares estimator come into play through the skewness and kurtosis coefficients of the nonnormal error distribution.
An introduction to foundations and applications for quantitatively oriented graduate social-science students and individual researchers.
"This volume presents in detail the fundamental theories of linear regression analysis and diagnosis, as well as the relevant statistical computing techniques so that readers are able to actually model the data using the techniques described in the book. This book is suitable for graduate students who are either majoring in statistics/biostatistics or using linear regression analysis substantially in their subject area." --Book Jacket.
Intuitively understand regression analysis by focusing on concepts and graphs rather than equations and formulas. I use everyday language so you can grasp regression at a deeper level. Progress from a beginner to a skilled practitioner. Learn practical tips for performing your analysis and interpreting the results. Feel confident that you're analyzing your data properly and able to trust your results. Know that you can detect and correct problems that arise. Includes access to free downloadable datasets for the examples. Learn the following: How regression works and when to use it. Selecting the correct type of regression analysis. Specifying the best model. Understanding main effects, interaction effects, and modeling curvature. Interpreting the results. Assessing the fit of the model. Generating predictions and evaluating their precision. Checking the assumptions and resolving issues. Examples of different types of regression analyses.
This paper investigates the finite sample distribution of the least squares estimator of the autoregressive parameter in a first-order autoregressive model. Uniform asymptotic expansion for the distribution applicable to both stationary and nonstationary cases is obtained. Accuracy of the approximation to the distribution by a first few terms of this expansion is then investigated. It is found that the leading term of this expansion approximates well the distribution. The approximation is, in almost all cases, accurate to the second decimal place throughout the distribution. In the literature, there exists a number of approximations to this distribution which are specifically designed to apply in some special cases of this model. The present approximation compares favorably with those approximations and in fact, its accuracy is, with almost no exception, as good as or better than these other approximations. Convenience of numerical computations seems also to favor the present approximations over the others. An application of the finding is illustrated with examples.
This is a beginner's guide to applied econometrics using the free statistics software R. It provides and explains R solutions to most of the examples in 'Principles of Econometrics' by Hill, Griffiths, and Lim, fourth edition. 'Using R for Principles of Econometrics' requires no previous knowledge in econometrics or R programming, but elementary notions of statistics are helpful.
The second edition of a bestselling textbook, Using R for Introductory Statistics guides students through the basics of R, helping them overcome the sometimes steep learning curve. The author does this by breaking the material down into small, task-oriented steps. The second edition maintains the features that made the first edition so popular, while updating data, examples, and changes to R in line with the current version. See What’s New in the Second Edition: Increased emphasis on more idiomatic R provides a grounding in the functionality of base R. Discussions of the use of RStudio helps new R users avoid as many pitfalls as possible. Use of knitr package makes code easier to read and therefore easier to reason about. Additional information on computer-intensive approaches motivates the traditional approach. Updated examples and data make the information current and topical. The book has an accompanying package, UsingR, available from CRAN, R’s repository of user-contributed packages. The package contains the data sets mentioned in the text (data(package="UsingR")), answers to selected problems (answers()), a few demonstrations (demo()), the errata (errata()), and sample code from the text. The topics of this text line up closely with traditional teaching progression; however, the book also highlights computer-intensive approaches to motivate the more traditional approach. The authors emphasize realistic data and examples and rely on visualization techniques to gather insight. They introduce statistics and R seamlessly, giving students the tools they need to use R and the information they need to navigate the sometimes complex world of statistical computing.