Download Free Approaches To Entropy Book in PDF and EPUB Free Download. You can read online Approaches To Entropy and write the review.

This is a book about thermodynamics, not history, but it adopts a semi-historical approach in order to highlight different approaches to entropy. The book does not follow a rigid temporal order of events, nor it is meant to be comprehensive. It includes solved examples for a solid understanding. The division into chapters under the names of key players in the development of the field is not intended to separate these individual contributions entirely, but to highlight their different approaches to entropy. This structure helps to provide a different view-point from other text-books on entropy.
Discover the mathematical riches of 'what is diversity?' in a book that adds mathematical rigour to a vital ecological debate.
This monograph offers a new foundation for information theory that is based on the notion of information-as-distinctions, being directly measured by logical entropy, and on the re-quantification as Shannon entropy, which is the fundamental concept for the theory of coding and communications. Information is based on distinctions, differences, distinguishability, and diversity. Information sets are defined that express the distinctions made by a partition, e.g., the inverse-image of a random variable so they represent the pre-probability notion of information. Then logical entropy is a probability measure on the information sets, the probability that on two independent trials, a distinction or “dit” of the partition will be obtained. The formula for logical entropy is a new derivation of an old formula that goes back to the early twentieth century and has been re-derived many times in different contexts. As a probability measure, all the compound notions of joint, conditional, and mutual logical entropy are immediate. The Shannon entropy (which is not defined as a measure in the sense of measure theory) and its compound notions are then derived from a non-linear dit-to-bit transform that re-quantifies the distinctions of a random variable in terms of bits—so the Shannon entropy is the average number of binary distinctions or bits necessary to make all the distinctions of the random variable. And, using a linearization method, all the set concepts in this logical information theory naturally extend to vector spaces in general—and to Hilbert spaces in particular—for quantum logical information theory which provides the natural measure of the distinctions made in quantum measurement. Relatively short but dense in content, this work can be a reference to researchers and graduate students doing investigations in information theory, maximum entropy methods in physics, engineering, and statistics, and to all those with a special interest in a new approach to quantum information theory.
Forty years ago, in 1957, the Principle of Maximum Entropy was first intro duced by Jaynes into the field of statistical mechanics. Since that seminal publication, this principle has been adopted in many areas of science and technology beyond its initial application. It is now found in spectral analysis, image restoration and a number of branches ofmathematics and physics, and has become better known as the Maximum Entropy Method (MEM). Today MEM is a powerful means to deal with ill-posed problems, and much research work is devoted to it. My own research in the area ofMEM started in 1980, when I was a grad uate student in the Department of Electrical Engineering at the University of Sydney, Australia. This research work was the basis of my Ph.D. the sis, The Maximum Entropy Method and Its Application in Radio Astronomy, completed in 1985. As well as continuing my research in MEM after graduation, I taught a course of the same name at the Graduate School, Chinese Academy of Sciences, Beijingfrom 1987to 1990. Delivering the course was theimpetus for developing a structured approach to the understanding of MEM and writing hundreds of pages of lecture notes.
Social Entropy Theory illuminates the fundamental problems of societal analysis with a nonequilibrium approach, a new frame of reference built upon contemporary macrological principles, including general systems theory and information theory. Social entropy theory, using Shannon's H and the entropy concept, avoids the common (and often artificial) separation of theory and method in sociology. The hallmark of the volume is integration, as seen in the author's interdisciplinary discussions of equilibrium, entropy, and homeostasis. Unique features of the book are the introduction of the three-level model of social measurement, the theory of allocation, the concepts of global-mutable-immutable, discussion of order and power, and a large set of testable hypotheses.
This book considers a relatively new metric in complex systems, transfer entropy, derived from a series of measurements, usually a time series. After a qualitative introduction and a chapter that explains the key ideas from statistics required to understand the text, the authors then present information theory and transfer entropy in depth. A key feature of the approach is the authors' work to show the relationship between information flow and complexity. The later chapters demonstrate information transfer in canonical systems, and applications, for example in neuroscience and in finance. The book will be of value to advanced undergraduate and graduate students and researchers in the areas of computer science, neuroscience, physics, and engineering.
This pioneering graduate textbook provides readers with the concepts and practical tools required to understand the maximum entropy principle, and apply it to an understanding of ecological patterns. Rather than building and combining mechanistic models of ecosystems, the approach is grounded in information theory and the logic of inference. Paralleling the derivation of thermodynamics from the maximum entropy principle, the state variable theory of ecology developed in this book predicts realistic forms for all metrics of ecology that describe patterns in the distribution, abundance, and energetics of species over multiple spatial scales, a wide range of habitats, and diverse taxonomic groups. The first part of the book is foundational, discussing the nature of theory, the relationship of ecology to other sciences, and the concept of the logic of inference. Subsequent sections present the fundamentals of macroecology and of maximum information entropy, starting from first principles. The core of the book integrates these fundamental principles, leading to the derivation and testing of the predictions of the maximum entropy theory of ecology (METE). A final section broadens the book's perspective by showing how METE can help clarify several major issues in conservation biology, placing it in context with other theories and highlighting avenues for future research.
This monograph is an outgrowth of a set of lecture notes on the maximum entropy method delivered at the 1st Venezuelan School of Mathematics. This yearly event aims at acquainting graduate students and university teachers with the trends, techniques and open problems of current interest. In this book the author reviews several versions of the maximum entropy method and makes its underlying philosophy clear.
Vijay Singh explains the basic concepts of entropy theory from a hydraulic perspective and demonstrates the theory's application in solving practical engineering problems.
Focuses On an Emerging Field in Water EngineeringA broad treatment of the Tsallis entropy theory presented from a water resources engineering point of view, Introduction to Tsallis Entropy Theory in Water Engineering fills a growing need for material on this theory and its relevant applications in the area of water engineering. This self-contained