Download Free Applying Computational Intelligence Book in PDF and EPUB Free Download. You can read online Applying Computational Intelligence and write the review.

Applications of Computational Intelligence in Multi-Disciplinary Research provides the readers with a comprehensive handbook for applying the powerful principles, concepts, and algorithms of computational intelligence to a wide spectrum of research cases. The book covers the main approaches used in computational intelligence, including fuzzy logic, neural networks, evolutionary computation, learning theory, and probabilistic methods, all of which can be collectively viewed as soft computing. Other key approaches included are swarm intelligence and artificial immune systems. These approaches provide researchers with powerful tools for analysis and problem-solving when data is incomplete and when the problem under consideration is too complex for standard mathematics and the crisp logic approach of Boolean computing. - Provides an overview of the key methods of computational intelligence, including fuzzy logic, neural networks, evolutionary computation, learning theory, and probabilistic methods - Includes case studies and real-world examples of computational intelligence applied in a variety of research topics, including bioinformatics, biomedical engineering, big data analytics, information security, signal processing, machine learning, nanotechnology, and optimization techniques - Presents a thorough technical explanation on how computational intelligence is applied that is suitable for a wide range of multidisciplinary and interdisciplinary research
In theory, there is no difference between theory and practice. But, in practice, there is. Jan L. A. van de Snepscheut The ?ow of academic ideas in the area of computational intelligence has penetrated industry with tremendous speed and persistence. Thousands of applications have proved the practical potential of fuzzy logic, neural networks, evolutionary com- tation, swarm intelligence, and intelligent agents even before their theoretical foundation is completely understood. And the popularity is rising. Some software vendors have pronounced the new machine learning gold rush to “Transfer Data into Gold”. New buzzwords like “data mining”, “genetic algorithms”, and “swarm optimization” have enriched the top executives’ vocabulary to make them look more “visionary” for the 21st century. The phrase “fuzzy math” became political jargon after being used by US President George W. Bush in one of the election debates in the campaign in 2000. Even process operators are discussing the perf- mance of neural networks with the same passion as the performance of the Dallas Cowboys. However, for most of the engineers and scientists introducing computational intelligence technologies into practice, looking at the growing number of new approaches, and understanding their theoretical principles and potential for value creation becomes a more and more dif?cult task.
This book focuses on computational intelligence techniques and their applications — fast-growing and promising research topics that have drawn a great deal of attention from researchers over the years. It brings together many different aspects of the current research on intelligence technologies such as neural networks, support vector machines, fuzzy logic and evolutionary computation, and covers a wide range of applications from pattern recognition and system modeling, to intelligent control problems and biomedical applications. Fundamental concepts and essential analysis of various computational techniques are presented to offer a systematic and effective tool for better treatment of different applications, and simulation and experimental results are included to illustrate the design procedure and the effectiveness of the approaches./a
Computational Intelligence: Principles, Techniques and Applications presents both theories and applications of computational intelligence in a clear, precise and highly comprehensive style. The textbook addresses the fundamental aspects of fuzzy sets and logic, neural networks, evolutionary computing and belief networks. The application areas include fuzzy databases, fuzzy control, image understanding, expert systems, object recognition, criminal investigation, telecommunication networks, and intelligent robots. The book contains many numerical examples and homework problems with sufficient hints so that the students can solve them on their own.
This bestselling book gives business leaders and executives a foundational education on how to leverage artificial intelligence and machine learning solutions to deliver ROI for your business.
The field of computational intelligence has grown tremendously over that past five years, thanks to evolving soft computing and artificial intelligent methodologies, tools and techniques for envisaging the essence of intelligence embedded in real life observations. Consequently, scientists have been able to explain and understand real life processes and practices which previously often remain unexplored by virtue of their underlying imprecision, uncertainties and redundancies, and the unavailability of appropriate methods for describing the incompleteness and vagueness of information represented. With the advent of the field of computational intelligence, researchers are now able to explore and unearth the intelligence, otherwise insurmountable, embedded in the systems under consideration. Computational Intelligence is now not limited to only specific computational fields, it has made inroads in signal processing, smart manufacturing, predictive control, robot navigation, smart cities, and sensor design to name a few. Recent Trends in Computational Intelligence Enabled Research: Theoretical Foundations and Applications explores the use of this computational paradigm across a wide range of applied domains which handle meaningful information. Chapters investigate a broad spectrum of the applications of computational intelligence across different platforms and disciplines, expanding our knowledge base of various research initiatives in this direction. This volume aims to bring together researchers, engineers, developers and practitioners from academia and industry working in all major areas and interdisciplinary areas of computational intelligence, communication systems, computer networks, and soft computing. - Provides insights into the theory, algorithms, implementation, and application of computational intelligence techniques - Covers a wide range of applications of deep learning across various domains which are researching the applications of computational intelligence - Investigates novel techniques and reviews the state-of-the-art in the areas of machine learning, computer vision, soft computing techniques
Presents the latest scholarly research on the concepts, paradigms, and algorithms of computational intelligence and its constituent methodologies, such as evolutionary computation, neural networks, and fuzzy logic. This volume ncludes coverage on a broad range of topics and perspectives such as cloud computing, sampling in optimization, and swarm intelligence.
Hybrid Computational Intelligence: Challenges and Utilities is a comprehensive resource that begins with the basics and main components of computational intelligence. It brings together many different aspects of the current research on HCI technologies, such as neural networks, support vector machines, fuzzy logic and evolutionary computation, while also covering a wide range of applications and implementation issues, from pattern recognition and system modeling, to intelligent control problems and biomedical applications. The book also explores the most widely used applications of hybrid computation as well as the history of their development. Each individual methodology provides hybrid systems with complementary reasoning and searching methods which allow the use of domain knowledge and empirical data to solve complex problems. - Provides insights into the latest research trends in hybrid intelligent algorithms and architectures - Focuses on the application of hybrid intelligent techniques for pattern mining and recognition, in big data analytics, and in human-computer interaction - Features hybrid intelligent applications in biomedical engineering and healthcare informatics
Industrial engineering is a branch of engineering dealing with the optimization of complex processes or systems. It is concerned with the development, improvement, implementation and evaluation of production and service systems. Computational Intelligence Systems find a wide application area in industrial engineering: neural networks in forecasting, fuzzy sets in capital budgeting, ant colony optimization in scheduling, Simulated Annealing in optimization, etc. This book will include most of the application areas of industrial engineering through these computational intelligence systems. In the literature, there is no book including many real and practical applications of Computational Intelligence Systems from the point of view of Industrial Engineering. Every chapter will include explanatory and didactic applications. It is aimed that the book will be a main source for MSc and PhD students.
FLINS, originally an acronym for OC Fuzzy Logic and Intelligent technologies in Nuclear ScienceOCO, has now been extended to include computational intelligent systems for applied research. FLINS 2004, is the sixth in a series of international conferences, covers state-of-the-art research and development in applied computational intelligence for applied research in general and for power/nuclear engineering in particular. This book presents the latest research trends and future research directions in the field. The proceedings have been selected for coverage in: . OCo Index to Scientific & Technical Proceedings- (ISTP / ISI Proceedings). OCo Index to Scientific & Technical Proceedings (ISTP CDROM version / ISI Proceedings). OCo CC Proceedings OCo Engineering & Physical Sciences."