Download Free Applied Space Systems Engineering Book in PDF and EPUB Free Download. You can read online Applied Space Systems Engineering and write the review.

Applied Space Systems Engineering is the 17th book produced by the US Air Force Academy’s Space Technology Series team. The purpose of Applied Space Systems Engineering (ASSE) is to provide inspiration, processes, approaches, tools, and information for systems engineers that are leading the way in complex aerospace system design, development, and operation. An extensive author and editor team created this book based on a complete and rigorous set of systems engineer competencies rooted in the experiences and philosophies of seasoned space systems engineers from across the community. The “best of the best” performing system engineers have contributed their wealth of experience, successful tools and approaches, and lessons learned to this project. This book presents the “how-to” necessary to “systems engineer” complex aerospace-related projects, along with information to help the aspiring or current systems engineer achieve a higher level of understanding and performance. It’s geared to practitioners as they work through projects, but may also serve as a primary text or reference for graduate-level courses and development programs. Many aerospace-related case studies, examples, and lessons learned are spread throughout ASSE to provide historical insights and practical applications. A companion text, Applied Project Management for Space Systems, is also available.
Fundamentals of Space Systems was developed to satisfy two objectives: the first is to provide a text suitable for use in an advanced undergraduate or beginning graduate course in both space systems engineering and space system design. The second is to be a primer and reference book for space professionals wishing to broaden their capabilities to develop, manage the development, or operate space systems. The authors of the individual chapters are practicing engineers that have had extensive experience in developing sophisticated experimental and operational spacecraft systems in addition to having experience teaching the subject material. The text presents the fundamentals of all the subsystems of a spacecraft missions and includes illustrative examples drawn from actual experience to enhance the learning experience. It includes a chapter on each of the relevant major disciplines and subsystems including space systems engineering, space environment, astrodynamics, propulsion and flight mechanics, attitude determination and control, power systems, thermal control, configuration management and structures, communications, command and telemetry, data processing, embedded flight software, survuvability and reliability, integration and test, mission operations, and the initial conceptual design of a typical small spacecraft mission.
Applied Project Management for Space Systems is the 16th book produced by the US Air Force Academy’s Space Technology Series. The “best-of-the-best” performing project managers have contributed their experience and lessons learned to this project. 48 authors with over 400 years of collective experience in managing space projects have contributed to this book. The purpose of Applied Project Management for Space Systems is to provide inspiration, processes, tools, and information for the project managers that are leading the way in complex space-system design, development, and operation. It augments the superb general project management information and approaches offered by the Project Management Institute and a host of other books. Applied Project Management for Space Systems presents approaches for managing complex space projects, along with information that’s intended to help the aspiring or current project manager move to a higher level of understanding and performance. It’s meant for practitioners as they work through projects, but may also serve as a primary text or reference for graduate-level courses and development programs. Many space-related case studies, samples, and lessons learned are spread throughout the book to supply readers with historical insights to manage and guide current space projects.
The definition of all space systems starts with the establishment of its fundamental parameters: requirements to be fulfilled, overall system and satellite design, analysis and design of the critical elements, developmental approach, cost, and schedule. There are only a few texts covering early design of space systems and none of them has been specifically dedicated to it. Furthermore all existing space engineering books concentrate on analysis. None of them deal with space system synthesis – with the interrelations between all the elements of the space system. Introduction to Space Systems concentrates on understanding the interaction between all the forces, both technical and non-technical, which influence the definition of a space system. This book refers to the entire system: space and ground segments, mission objectives as well as to cost, risk, and mission success probabilities. Introduction to Space Systems is divided into two parts. The first part analyzes the process of space system design in an abstract way. The second part of the book focuses on concrete aspects of the space system design process. It concentrates on interactions between design decisions and uses past design examples to illustrate these interactions. The idea is for the reader to acquire a good insight in what is a good design by analyzing these past designs.
Following on from the hugely successful previous editions, the third edition of Spacecraft Systems Engineering incorporates the most recent technological advances in spacecraft and satellite engineering. With emphasis on recent developments in space activities, this new edition has been completely revised. Every chapter has been updated and rewritten by an expert engineer in the field, with emphasis on the bus rather than the payload. Encompassing the fundamentals of spacecraft engineering, the book begins with front-end system-level issues, such as environment, mission analysis and system engineering, and progresses to a detailed examination of subsystem elements which represent the core of spacecraft design - mechanical, electrical, propulsion, thermal, control etc. This quantitative treatment is supplemented by an appreciation of the interactions between the elements, which deeply influence the process of spacecraft systems design. In particular the revised text includes * A new chapter on small satellites engineering and applications which has been contributed by two internationally-recognised experts, with insights into small satellite systems engineering. * Additions to the mission analysis chapter, treating issues of aero-manouevring, constellation design and small body missions. In summary, this is an outstanding textbook for aerospace engineering and design students, and offers essential reading for spacecraft engineers, designers and research scientists. The comprehensive approach provides an invaluable resource to spacecraft manufacturers and agencies across the world.
This Tutorial Text provides an introduction to systems engineering principles, tools, and practices as applied to astronomical systems. Written for engineers, scientists, and managers, it is intended to aid in the transition from a discipline specialist to a systems engineer. Topics include interface control, the lifecycle model, the role of trade studies, and the flow and allocation of requirements. Particular attention is paid to deriving the law of error propagation because it is the basis for formal performance budgeting and estimating the probability of success. Several examples supplement this derivation. The book concludes with a case study for a space science mission.
This full-color textbook will help students and professionals understand the space environment and its impacts on spacecraft design, engineering, and performance. While the primary emphasis of the book is the Earth's environment and its effects on spacecraft, it also addresses the extraterrestrial environment and the effects of radiation on humans in space. The book begins with an introduction to the history of spacecraft failures, risk management reliability and quality assurance techniques, and parts reliability. It goes on to provide an overview of the structure of the Sun: the structure, origin, and models of the geomagnetic field; gravitational field of the Earth; Earth's magnetosphere and radiation environment; neutral environment including fundamentals of the kinetic theory of gasses; variation of pressure with altitude and hypoxia of humans; electromagnetic propagation; the effect of atomic oxygen of materials; plasma surrounding the Earth; transport and effects of photon
To understand orbits, spacecraft, and all the other elements that make up the fascinating field of astronautics -- just turn the pages of this book.