Download Free Applied Seismic Anisotropy Book in PDF and EPUB Free Download. You can read online Applied Seismic Anisotropy and write the review.

The vertical seismic profile, acquired with an array of 3C receivers and either a single source or several arranged in a multi-component configuration, provides an ideal high fidelity calibration tool for seismic projects involved in the application of seismic anisotropy. This book catalogues the majority of specialized tools necessary to work with P-P, P-S and S-S data from such VSP surveys at the acquisition design, processing and interpretation stages. In particular, it discusses 3C, 4C, 6C and 9C VSP, marine and land surveys with near and multiple offsets (walkways), azimuths (walkarounds) or a combination of both. These are considered for TIH or TIV flavours of seismic anisotropy arising from cracks, fractures, sedimentary layering, and shales. The anisotropic adaptation of familiar seismic methods for velocity analysis and inversion, reflected amplitude interpretation, are given together with more multi-component specific algorithms based upon the principles dictated by the vector convolutional model. Thus, multi-component methods are described that provide tests and compensation for source or receiver vector fidelity, tool rotation correction, layer stripping, near-surface correction, wavefield separation, and the Alford rotation with its variants. The work will be of interest to geophysicists involved in research or the application of seismic anisotropy using multi-component seismic.
All rock masses are seismically anisotropic, but we generally ignore this in our seismic acquisition, processing, and interpretation. The anisotropy nonetheless does affect our data, in ways that limit the effectiveness with which we can use it, as long as we ignore it. This book, produced for use with the fifth SEG/EAGE Distinguished Instructor Short Course, helps us understand why this inconsistency between reality and practice has been so successful in the past and why it will be less successful in the future as we acquire better seismic data (especially including vector seismic data) and correspondingly higher expectations of it. This book helps us understand how we can modify our practice to more fully realize the potential inherent in our data through algorithms which recognize the fact of seismic anisotropy.
Downhole microseismic monitoring of stimulation and production of unconventional reservoirs has resulted in renewed industry interest in seismic anisotropy. This occurred not only because anisotropy of hydrocarbon-bearing shales is among the strongest in rocks but also because downhole microseismics shifts the focus from the standard exploration of P-waves to shear waves. The consequences of the difference in wave type are profound for geophysicists because everyone involved - from theoreticians to developers and users of microseismic data-processing software - must be aware of shear-wave splitting, singularities, and multivalued wavefronts, which have been largely irrelevant for P-waves propagating in relatively simple geologic settings. Anisotropy and Microseismics leads readers on a path of discovery of rarely examined wave phenomena and their possible usage. Most of the chapters begin by formulating a question, followed by explanations of what is exciting about it, where the mystery might lie, and what could be the potential value of answering the question. Importantly, the findings entail useful applications, as showcased by the unmistakably practical flavor of the chapters on microseismic event location, moment tensor inversion, and imaging. As an investigation of microseismic methodologies and techniques is conducted, it often yields unexpected results.
Expanding the author's original work on processing to include inversion and interpretation, and including developments in all aspects of conventional processing, this two-volume set is a comprehensive and complete coverage of the modern trends in the seismic industry - from time to depth, from 3D to 4D, from 4D to 4C, and from isotropy to anisotropy.
Seismic measurements take many forms, and appear to have a universal role in the Earth Sciences. They are the means for most easily and economically interpreting what lies beneath the visible surface. There are huge economic rewards and losses to be made when interpreting the shallow crust or subsurface more, or less accurately, as the case may be.
A multidisciplinary perspective on the dynamic processes occurring in Earth's mantle The convective motion of material in Earth's mantle, powered by heat from the deep interior of our planet, drives plate tectonics at the surface, generating earthquakes and volcanic activity. It shapes our familiar surface landscapes, and also stabilizes the oceans and atmosphere on geologic timescales. Mantle Convection and Surface Expressions brings together perspectives from observational geophysics, numerical modelling, geochemistry, and mineral physics to build a holistic picture of the deep Earth. It explores the dynamic processes occurring in the mantle as well as the associated heat and material cycles. Volume highlights include: Perspectives from different scientific disciplines with an emphasis on exploring synergies Current state of the mantle, its physical properties, compositional structure, and dynamic evolution Transport of heat and material through the mantle as constrained by geophysical observations, geochemical data and geodynamic model predictions Surface expressions of mantle dynamics and its control on planetary evolution and habitability The American Geophysical Union promotes discovery in Earth and space science for the benefit of humanity. Its publications disseminate scientific knowledge and provide resources for researchers, students, and professionals.
Observing offset-dependent seismic reflectivity has proven to be a valuable exploration tool for the direct detection of hydrocarbons. This monograph provides a comprehensive review of reflection coefficients and their approximations in isotropic media, followed by an in-depth discussion of reflection amplitudes in anisotropic media. No prior knowledge of seismic anisotropy is assumed, and considerable effort is spent to introduce wave propagation and medium parameterizations useful for surface seismic applications in the presence of anisotropy. The first anisotropic model discussed is transverse isotropy with a vertical axis of symmetry (VTI media), typically used to describe shale sequences. Then the study of VTI reflection coefficients is extended to transverse isotropy with a horizontal axis of symmetry (HTI) - the symmetry system that describes a system of parallel vertical cracks. Analysis of the "Shuey-type" approximate HTI P-wave reflection coefficient makes it possible to devise fracture-detection algorithms based on the inversion of azimuthal differences of the P-wave AVO gradient. The monograph also presents analysis of shear- and converted-wave reflection coefficients for HTI and orthorhombic models, discusses practical aspects of applying the azimuthal AVO analysis, and mentions promising recent results.