Download Free Applied Probability And Statistics Book in PDF and EPUB Free Download. You can read online Applied Probability And Statistics and write the review.

This book moves systematically through the topic of applied probability from an introductory chapter to such topics as random variables and vectors, stochastic processes, estimation, testing and regression. The topics are well chosen and the presentation is enriched by many examples from real life. Each chapter concludes with many original, solved and unsolved problems and hundreds of multiple choice questions, enabling those unfamiliar with the topics to master them. Additionally appealing are historical notes on the mathematicians mentioned throughout, and a useful bibliography. A distinguishing character of the book is its thorough and succinct handling of the varied topics.
Despite the fears of university mathematics departments, mathematics educat,ion is growing rather than declining. But the truth of the matter is that the increases are occurring outside departments of mathematics. Engineers, computer scientists, physicists, chemists, economists, statis- cians, biologists, and even philosophers teach and learn a great deal of mathematics. The teaching is not always terribly rigorous, but it tends to be better motivated and better adapted to the needs of students. In my own experience teaching students of biostatistics and mathematical bi- ogy, I attempt to convey both the beauty and utility of probability. This is a tall order, partially because probability theory has its own vocabulary and habits of thought. The axiomatic presentation of advanced probability typically proceeds via measure theory. This approach has the advantage of rigor, but it inwitably misses most of the interesting applications, and many applied scientists rebel against the onslaught of technicalities. In the current book, I endeavor to achieve a balance between theory and app- cations in a rather short compass. While the combination of brevity apd balance sacrifices many of the proofs of a rigorous course, it is still cons- tent with supplying students with many of the relevant theoretical tools. In my opinion, it better to present the mathematical facts without proof rather than omit them altogether.
Concise advanced-level introduction to stochastic processes that arise in applied probability. Poisson process, renewal theory, Markov chains, Brownian motion, much more. Problems. References. Bibliography. 1970 edition.
The long-awaited revision of Fundamentals of Applied Probability and Random Processes expands on the central components that made the first edition a classic. The title is based on the premise that engineers use probability as a modeling tool, and that probability can be applied to the solution of engineering problems. Engineers and students studying probability and random processes also need to analyze data, and thus need some knowledge of statistics. This book is designed to provide students with a thorough grounding in probability and stochastic processes, demonstrate their applicability to real-world problems, and introduce the basics of statistics. The book's clear writing style and homework problems make it ideal for the classroom or for self-study. Demonstrates concepts with more than 100 illustrations, including 2 dozen new drawings Expands readers’ understanding of disruptive statistics in a new chapter (chapter 8) Provides new chapter on Introduction to Random Processes with 14 new illustrations and tables explaining key concepts. Includes two chapters devoted to the two branches of statistics, namely descriptive statistics (chapter 8) and inferential (or inductive) statistics (chapter 9).
This introduction to modern concepts of applied stochastic processes is written for a broad range of applications in diverse areas of engineering and the physical sciences (unlike other books, which are written primarily for communications or electrical engineering). Emphasis is on clarifying the basic principles supporting current prediction techniques. The first eight chapters present the probability theory relevant to analysis of stochastic processes. The following nine chapters discuss principles, advanced techniques (including the procedures of spectral analysis and the development of the probability density function) and applications. Also features material found in the recent literature such as higher-order spectral analysis, the joint probability distribution of amplitudes and periods and non-Gaussian random processes. Includes numerous illustrative examples.
This book contains an in-depth treatment of matrix-exponential (ME) distributions and their sub-class of phase-type (PH) distributions. Loosely speaking, an ME distribution is obtained through replacing the intensity parameter in an exponential distribution by a matrix. The ME distributions can also be identified as the class of non-negative distributions with rational Laplace transforms. If the matrix has the structure of a sub-intensity matrix for a Markov jump process we obtain a PH distribution which allows for nice probabilistic interpretations facilitating the derivation of exact solutions and closed form formulas. The full potential of ME and PH unfolds in their use in stochastic modelling. Several chapters on generic applications, like renewal theory, random walks and regenerative processes, are included together with some specific examples from queueing theory and insurance risk. We emphasize our intention towards applications by including an extensive treatment on statistical methods for PH distributions and related processes that will allow practitioners to calibrate models to real data. Aimed as a textbook for graduate students in applied probability and statistics, the book provides all the necessary background on Poisson processes, Markov chains, jump processes, martingales and re-generative methods. It is our hope that the provided background may encourage researchers and practitioners from other fields, like biology, genetics and medicine, who wish to become acquainted with the matrix-exponential method and its applications.
This 4-part treatment begins with algebra and analytic geometry and proceeds to an exploration of the calculus of algebraic functions and transcendental functions and applications. 1985 edition. Includes 310 figures and 18 tables.
* More Motivation - A completely revised chapter 1 gets students motivated right from the beginning. * Revised Probability Topics - The authors have revised and enhanced probability topics to promote even easier understanding. * Chapter Reorganization - Chapters on hypothesis testing and confidence intervals have been reorganized and rewritten. There is now expanded treatment of confidence intervals, prediction intervals, and tolerance intervals. * Real Engineering Applications - Treatment of all topics is oriented towards real engineering applications. In the probability chapters, the authors do not emphasize counting methods or artificial applications such as gambling. * Real Data, Real Engineering Situations - Examples and exercises throughout text use real data and real engineering situations. This motivates students to learn new concepts and gives them a taste of practical engineering experience. Use of the Computer - Computer usage is closely integrated into the text and homework exercises.
This book is a survey of recent work on the application of number theory in statistics. The essence of number-theoretic methods is to find a set of points that are universally scattered over an s-dimensional unit cube. In certain circumstances this set can be used instead of random numbers in the Monte Carlo method. The idea can also be applied to other problems such as in experimental design. This book will illustrate the idea of number-theoretic methods and their application in statistics. The emphasis is on applying the methods to practical problems so only part-proofs of theorems are given.