Download Free Applied Laser Spectroscopy For Nuclear Physics Book in PDF and EPUB Free Download. You can read online Applied Laser Spectroscopy For Nuclear Physics and write the review.

This thesis explores two distinct applications of laser spectroscopy: the study of nuclear ground state properties, and element selective radioactive ion beam production. It also presents the methods and results of an investigation into isotope shifts in the mercury isotopic chain. These Resonance Ionization Laser Ion Source (RILIS) developments are detailed, together with an RILIS ionization scheme that allowed laser ionized ion beams of chromium, germanium, radium and tellurium to be generated at the Isotope Mass Separator On-Line (ISOLDE) facility. A combination of laser spectroscopy with decay spectroscopy and mass spectrometry unambiguously demonstrated a cessation of the extreme shape staggering first observed in the 1970s and revealed the characteristic kink at the crossing of the N=126 shell closure. A series of RILIS developments were required to facilitate this experiment, including mercury “ionization scheme” development and the coupling of the RILIS with an arc discharge ion source. Laser spectroscopy has since become a powerful tool for nuclear physics and the Resonance Ionization Laser Ion Source (RILIS), of the ISOLDE facility at CERN, is a prime example. Highlighting important advances in this field, the thesis offers a unique and revealing resource.
This volume contains the lectures and seminars presented at the NATO Advanced Study Institute on "Applied Laser Spectroscopy" the fourteenth course of the Europhysics School of Quantum Electronics, held under the supervision of the Quantum Electronics Division of the European Physical Society. The Institute was held at Centro "I Cappuccini", San Miniato, Tuscany, Italy, September 3-15,1989. The Europhysics School of Quantum Electronics was started in 1970 with the aim of providing instruction for young researchers and advanced students already engaged in the area of quantum electronics or wishing to switch to this area from a different background. Presently the school is under the direction of Professors F.T. Arecchi and M Inguscio, University of Florence and Prof. H. Walther University of Munich and has the headquarters at the National Institute of Optics (INO), Firenze, Italy. Each time the directors choose a subject of particular interest, alternating fundamental topics with technological ones, and ask colleagues specifically competent in a given area to take the scientific responsibility for that course.
Due to the rapid progress in laser technology a wealth of novel fundamental and applied applications of lasers in atomic and plasma physics have become possible. This book focuses on the interaction of high intensity lasers with matter. It reviews the state of the art of high power laser sources, intensity laser-atom and laser-plasma interactions, laser matter interaction at relativistic intensities, and QED with intense lasers.
Nuclear structure Physics connects to some of our fundamental questions about the creation of universe and its basic constituents. At the same time, precise knowledge on the subject has lead to develop many important tools of human kind such as proton therapy, radioactive dating etc. This book contains chapters on some of the crucial and trending research topics in nuclear structure, including the nuclei lying on the extremes of spin, isospin and mass. A better theoretical understanding of these topics is important beyond the confines of the nuclear structure community. Additionally, the book will showcase the applicability and success of the different nuclear effective interaction parameters near the drip line, where hints for level reordering have already been seen, and where one can test the isospin-dependence of the interaction. The book offers comprehensive coverage of the most essential topics, including: • Nuclear Structure of Nuclei at or Near Drip-Lines • Synthesis challenges and properties of Superheavy nuclei • Nuclear Structure and Nuclear models - Ab-initio calculations, cluster models, Shell-model/DSM, RMF, Skyrme • Shell Closure, Magicity and other novel features of nuclei at extremes • Structure of Toroidal, Bubble Nuclei, halo and other exotic nuclei These topics are not only very interesting from theoretical nuclear physics perspective but are also quite complimentary for ongoing nuclear physics experimental program worldwide. It is hoped that the book chapters written by experienced and well known researchers/experts will be helpful for the master students, graduate students and researchers and serve as a standard & uptodate research reference book on the topics covered.
This handbook is a comprehensive, systematic source of modern nuclear physics. It aims to summarize experimental and theoretical discoveries and an understanding of unstable nuclei and their exotic structures, which were opened up by the development of radioactive ion (RI) beam in the late 1980s. The handbook comprises three major parts. In the first part, the experiments and measured facts are well organized and reviewed. The second part summarizes recognized theories to explain the experimental facts introduced in the first part. Reflecting recent synergistic progress involving both experiment and theory, the chapters both parts are mutually related. The last part focuses on cosmo-nuclear physics—one of the mainstream subjects in modern nuclear physics. Those comprehensive topics are presented concisely. Supported by introductory reviews, all chapters are designed to present their topics in a manner accessible to readers at the graduate level. The book therefore serves as a valuable source for beginners as well, helping them to learn modern nuclear physics.
A wide-ranging review of modern spectroscopic techniques such as X-ray, photoelectron, optical and laser spectroscopy, and radiofrequency and microwave techniques. On the fundamental side the book focuses on physical principles and the impact of spectroscopy on our understanding of the building blocks of matter, while in the area of applications particular attention is given to those in chemical analysis, photochemistry, surface characterisation, environmental and medical diagnostics, remote sensing and astrophyscis. The Fourth Edition also provides the reader with an update on laser cooling and trapping, Bose-Einstein condensation, ultra-fast spectroscopy, high-power laser/matter interaction, satellite-based astronomy and spectroscopic aspects of laser medicine.
Laser spectroscopy is a valuable tool for sensing and chemical analysis. Developments in lasers, detectors and mathematical analytical tools have led to improvements in the sensitivity and selectivity of spectroscopic techniques and extended their fields of application. Laser Spectroscopy for Sensing, Second Edition examines these advances and how laser spectroscopy can be used in a diverse range of industrial, medical, and environmental applications. The book provides an overview of laser spectroscopy at three levels: the fundamental aspects to consider when planning use of laser spectroscopy to solve a problem (from the sample properties to the laser properties to the data analysis), the technical aspects of several spectroscopic techniques, and the fields of applications of such techniques. In the new edition, key advancements from the field are captured as well as two new chapters on Raman Spectroscopy and Laser-induced breakdown spectroscopy. Laser Spectroscopy for Sensing provides readers with a broad overview of the techniques and applications of laser spectroscopy for sensing. Presents the fundamentals of laser technology for controlling the spectral and temporal aspects of laser excitation Explores laser spectroscopy techniques, including Raman spectroscopy and laser-induced breakdown spectroscopy Considers spectroscopic analysis of industrial materials and their applications in nuclear research and industry
Molecular and Laser Spectroscopy: Advances and Applications provides students and researchers with an up-to-date understanding of the fast-developing area of molecular and laser spectroscopy. Editor V.P. Gupta has brought together the eminent scientists on a selection of topics to develop a systematic approach, first covering basic principles needed to understand each cutting-edge technique and application. This book acts as a standard reference for advanced students of molecular and laser spectroscopy and as a graduate text for new entrants in the field. The book covers a wide range of applications of molecular and laser spectroscopy in diverse areas ranging from materials to medicine and defence, biomedical research, environmental monitoring, forensic investigations, food and agriculture, and chemical, pharmaceutical and petrochemical processes. Researchers and scientific personnel in these fields will learn the latest techniques in order to put them to practical use in their work. - Covers several areas of spectroscopy research in a single volume, saving researchers time - Includes exhaustive lists of research articles, reviews and books at the end of each chapter to point readers in the right direction for further learning - Features illustrative examples of the varied applications - Serves as a practical guide to those interested in using molecular and laser spectroscopy tools in their research and field applications
This book is devoted to one of the most active domains of atomic physic- atomic physics of heavy positive ions. During the last 30 years, this terrain has attracted enormous attention from both experimentalists and theoreti cians. On the one hand, this interest is stimulated by rapid progress in the development of laboratory ion sources, storage rings, ion traps and methods for ion cooling. In many laboratories, a considerable number of complex and accurate experiments have been initiated, challenging new frontiers. Highly charged ions are used for investigations related to fundamental research and to more applied fields such as controlled nuclear fusion driven by heavy ions and its diagnostics, ion-surface interaction, physics of hollow atoms, x-ray lasers, x-ray spectroscopy, spectrometry of ions in storage rings and ion traps, biology, and medical therapy. On the other hand, the new technologies have stimulated elaborate theo retical investigations, especially in developing QED theory, relativistic many body techniques, plasma-kinetic modeling based on the Coulomb interactions of highly charged ions with photons and various atomic particles - electrons, atoms, molecules and ions. The idea of assembling this book matured while the editors were writ ing another book, X-Ray Radiation of Highly Charged Ions by H. F. Beyer, H. -J. Kluge and V. P. Shevelko (Springer, Berlin, Heidelberg 1997) covering a broad range of x-ray and other radiative phenomena central to atomic physics with heavy ions.