Download Free Applied Holography Book in PDF and EPUB Free Download. You can read online Applied Holography and write the review.

This primer is a collection of notes based on lectures that were originally given at IIT Madras (India) and at IFT Madrid (Spain). It is a concise and pragmatic course on applied holography focusing on the basic analytic and numerical techniques involved. The presented lectures are not intended to provide all the fundamental theoretical background, which can be found in the available literature, but they concentrate on concrete applications of AdS/CFT to hydrodynamics, quantum chromodynamics and condensed matter. The idea is to accompany the reader step by step through the various benchmark examples with a classmate attitude, providing details for the computations and open-source numerical codes in Mathematica, and sharing simple tricks and warnings collected during the author’s research experience. At the end of this path, the reader will be in possess of all the fundamental skills and tools to learn by him/herself more advanced techniques and to produce independent and novel research in the field.
For technical people who could use holography.
From fundamentals to advanced experiments and applications, this book explains how holography works. It guides students from simple optics to advanced topics in holography, following a practical approach using real-world materials. This proven university textbook contains exercises plus solutions as well as instructions for more than 20 experiments.
Optical Holography: Materials, Theory and Applications provides researchers the fundamentals of holography through diffraction optics and an overview of the most relevant materials and applications, ranging from computer holograms to holographic data storage. Dr. Pierre Blanche leads a team of thought leaders in academia and industry in this practical reference for researchers and engineers in the field of holography. This book presents all the information readers need in order to understand how holographic techniques can be applied to a variety of applications, the benefits of those techniques, and the materials that enable these technologies. Researchers and engineers will gain comprehensive knowledge on how to select the best holographic techniques for their needs. Covers current applications of holographic techniques in areas such as 3D television, solar concentration, non-destructive testing and data storage Describes holographic recording materials and their most relevant applications Provides the fundamentals of holography and diffraction optics
This self-contained treatment of the principles, techniques, and applications of holography examines theory and practice, image analysis, specialized techniques, and a range of applications of both analog and digital holographic methods. The author, an esteemed professor in the field, describes the nature of holographic and lithographic diffraction gratings and the tools necessary for their design and analysis. Suitable for researchers and graduate students in physics and optics, the book includes exercise problems to enhance understanding. Features Offers a systematic, rigorous account of the principles, techniques, and applications of holography Draws on the experience and lectures of a well-known author and professor in the field Presents the theory and applications of both analog and digital holographic methods Includes exercise problems
Advanced Holography - Metrology and Imaging covers digital holographic microscopy and interferometry, including interferometry in the infra red. Other topics include synthetic imaging, the use of reflective spatial light modulators for writing dynamic holograms and image display using holographic screens. Holography is discussed as a vehicle for artistic expression and the use of software for the acquisition of skills in optics and holography is also presented. Each chapter provides a comprehensive introduction to a specific topic, with a survey of developments to date.
This highly practical and self-contained guidebook explains the principles and major applications of digital hologram recording and numerical reconstruction (Digital Holography). A special chapter is designated to digital holographic interferometry with applications in deformation and shape measurement and refractive index determination. Applications in imaging and microscopy are also described. Spcial techniques such as digital light-in-flight holography, holographic endoscopy, information encrypting, comparative holography, and related techniques of speckle metrology are also treated
This 1996 book is an expanded edition of one of the best known introductions to optical holography.
This book presents recent advances in three-dimensional (3D) imaging and display frameworks, encompassing three categories of 3D imaging and display technologies. The first category is nonphotorealistic 3D approaches based on conventional optical cameras to implement 3D stereoscopic observation of a scene. In the context of nonphotorealistic 3D imaging and reconstruction systems, the authors introduce general principles and also demonstrate camera calibration for 3D imaging, smart cameras, and full-link imaging methods using the optical modulation transfer function to improve imaging quality in conventional cameras. The second category is based on light-ray light field technology to achieve photorealistic 3D imaging and displays. In the context of light-ray light field systems, two approaches capable of light-ray light field 3D imaging by utilizing a camera array or a lens array are demonstrated. Accordingly, light-ray light field display approaches comprising head-mounted displays and integral displays are also introduced. The third category is also photorealistic 3D imaging and display technology, which is based on holography (i.e., diffraction or wavefront light field). In the corresponding holographic displays, the authors introduce 3D holographic displays from three elements: algorithms, devices, and systems, involving fast hologram generation algorithms, wide-viewing-angle display systems, and metasurface holography, etc. Including an investigative roadmap for future progress in optical imaging and 3D display systems, this book is essential reading for scientists and engineers in academia and industry who are interested in next-generation imaging and display concepts for 3D visual sensing systems.