Download Free Applied Equivariant Degree Book in PDF and EPUB Free Download. You can read online Applied Equivariant Degree and write the review.

This book presents a new degree theory for maps which commute with a group of symmetries. This degree is no longer a single integer but an element of the group of equivariant homotopy classes of maps between two spheres and depends on the orbit types of the spaces. The authors develop completely the theory and applications of this degree in a self-contained presentation starting with only elementary facts. The first chapter explains the basic tools of representation theory, homotopy theory and differential equations needed in the text. Then the degree is defined and its main abstract properties are derived. The next part is devoted to the study of equivariant homotopy groups of spheres and to the classification of equivariant maps in the case of abelian actions. These groups are explicitely computed and the effects of symmetry breaking, products and composition are thorougly studied. The last part deals with computations of the equivariant index of an isolated orbit and of an isolated loop of stationary points. Here differential equations in a variety of situations are considered: symmetry breaking, forcing, period doubling, twisted orbits, first integrals, gradients etc. Periodic solutions of Hamiltonian systems, in particular spring-pendulum systems, are studied as well as Hopf bifurcation for all these situations.
This monograph explores the concept of the Brouwer degree and its continuing impact on the development of important areas of nonlinear analysis. The authors define the degree using an analytical approach proposed by Heinz in 1959 and further developed by Mawhin in 2004, linking it to the Kronecker index and employing the language of differential forms. The chapters are organized so that they can be approached in various ways depending on the interests of the reader. Unifying this structure is the central role the Brouwer degree plays in nonlinear analysis, which is illustrated with existence, surjectivity, and fixed point theorems for nonlinear mappings. Special attention is paid to the computation of the degree, as well as to the wide array of applications, such as linking, differential and partial differential equations, difference equations, variational and hemivariational inequalities, game theory, and mechanics. Each chapter features bibliographic and historical notes, and the final chapter examines the full history. Brouwer Degree will serve as an authoritative reference on the topic and will be of interest to professional mathematicians, researchers, and graduate students.
This handbook is the fourth volume in a series of volumes devoted to self-contained and up-to-date surveys in the theory of ordinary differential equations, with an additional effort to achieve readability for mathematicians and scientists from other related fields so that the chapters have been made accessible to a wider audience. - Covers a variety of problems in ordinary differential equations - Pure mathematical and real-world applications - Written for mathematicians and scientists of many related fields
This volume is the second of two volumes representing leading themes of current research in nonlinear analysis and optimization. The articles are written by prominent researchers in these two areas and bring the readers, advanced graduate students and researchers alike, to the frontline of the vigorous research in important fields of mathematics. This volume contains articles on optimization. Topics covered include the calculus of variations, constrained optimization problems, mathematical economics, metric regularity, nonsmooth analysis, optimal control, subdifferential calculus, time scales and transportation traffic. The companion volume (Contemporary Mathematics, Volume 513) is devoted to nonlinear analysis. This book is co-published with Bar-Ilan University (Ramat-Gan, Israel). Table of Contents: J.-P. Aubin and S. Martin -- Travel time tubes regulating transportation traffic; R. Baier and E. Farkhi -- The directed subdifferential of DC functions; Z. Balanov, W. Krawcewicz, and H. Ruan -- Periodic solutions to $O(2)$-symmetric variational problems: $O(2) \times S^1$- equivariant gradient degree approach; J. F. Bonnans and N. P. Osmolovskii -- Quadratic growth conditions in optimal control problems; J. M. Borwein and S. Sciffer -- An explicit non-expansive function whose subdifferential is the entire dual ball; G. Buttazzo and G. Carlier -- Optimal spatial pricing strategies with transportation costs; R. A. C. Ferreira and D. F. M. Torres -- Isoperimetric problems of the calculus of variations on time scales; M. Foss and N. Randriampiry -- Some two-dimensional $\mathcal A$-quasiaffine functions; F. Giannessi, A. Moldovan, and L. Pellegrini -- Metric regular maps and regularity for constrained extremum problems; V. Y. Glizer -- Linear-quadratic optimal control problem for singularly perturbed systems with small delays; T. Maruyama -- Existence of periodic solutions for Kaldorian business fluctuations; D. Mozyrska and E. Paw'uszewicz -- Delta and nabla monomials and generalized polynomial series on time scales; D. Pallaschke and R. Urba'ski -- Morse indexes for piecewise linear functions; J.-P. Penot -- Error bounds, calmness and their applications in nonsmooth analysis; F. Rampazzo -- Commutativity of control vector fields and ""inf-commutativity""; A. J. Zaslavski -- Stability of exact penalty for classes of constrained minimization problems in finite-dimensional spaces. (CONM/514)
This invaluable book presents a comprehensive introduction to bifurcation theory in the presence of symmetry, an applied mathematical topic which has developed considerably over the past twenty years and has been very successful in analysing and predicting pattern formation and other critical phenomena in most areas of science where nonlinear models are involved, like fluid flow instabilities, chemical waves, elasticity and population dynamics.The book has two aims. One is to expound the mathematical methods of equivariant bifurcation theory. Beyond the classical bifurcation tools, such as center manifold and normal form reductions, the presence of symmetry requires the introduction of the algebraic and geometric formalism of Lie group theory and transformation group methods. For the first time, all these methods in equivariant bifurcations are presented in a coherent and self-consistent way in a book.The other aim is to present the most recent ideas and results in this theory, in relation to applications. This includes bifurcations of relative equilibria and relative periodic orbits for compact and noncompact group actions, heteroclinic cycles and forced symmetry-breaking perturbations. Although not all recent contributions could be included and a choice had to be made, a rather complete description of these new developments is provided. At the end of every chapter, exercises are offered to the reader.
The book introduces conceptually simple geometric ideas based on the existence of fundamental domains for metric G- spaces. A list of the problems discussed includes Borsuk-Ulam type theorems for degrees of equivariant maps in finite and infinite dimensional cases, extensions of equivariant maps and equivariant homotopy classification, genus and G-category, elliptic boundary value problem, equivalence of p-group representations. The new results and geometric clarification of several known theorems presented here will make it interesting and useful for specialists in equivariant topology and its applications to non-linear analysis and representation theory.
This book provides an introduction to degree theory and its applications to nonlinear differential equations. It uses an applications-oriented to address functional analysis, general topology and differential equations and offers a unified treatment of the classical Brouwer degree, the recently developed S?1-degree and the Dold-Ulrich degree for equivalent mappings and bifurcation problems. It integrates two seemingly disparate concepts, beginning with review material before shifting to classical theory and advanced application techniques.
This volume introduces equivariant homotopy, homology, and cohomology theory, along with various related topics in modern algebraic topology. It explains the main ideas behind some of the most striking recent advances in the subject. The works begins with a development of the equivariant algebraic topology of spaces culminating in a discussion of the Sullivan conjecture that emphasizes its relationship with classical Smith theory. The book then introduces equivariant stable homotopy theory, the equivariant stable homotopy category, and the most important examples of equivariant cohomology theories. The basic machinery that is needed to make serious use of equivariant stable homotopy theory is presented next, along with discussions of the Segal conjecture and generalized Tate cohomology. Finally, the book gives an introduction to "brave new algebra", the study of point-set level algebraic structures on spectra and its equivariant applications. Emphasis is placed on equivariant complex cobordism, and related results on that topic are presented in detail.
The book contains a collection of 21 original research papers which report on recent developments in various fields of nonlinear analysis. The collection covers a large variety of topics ranging from abstract fields such as algebraic topology, functional analysis, operator theory, spectral theory, analysis on manifolds, partial differential equations, boundary value problems, geometry of Banach spaces, measure theory, variational calculus, and integral equations, to more application-oriented fields like control theory, numerical analysis, mathematical physics, mathematical economy, and financial mathematics. The book is addressed to all specialists interested in nonlinear functional analysis and its applications, but also to postgraduate students who want to get in touch with this important field of modern analysis. It is dedicated to Alfonso Vignoli who has essentially contributed to the field, on the occasion of his sixtieth birthday.