Download Free Applied Environmental Biotechnology Present Scenario And Future Trends Book in PDF and EPUB Free Download. You can read online Applied Environmental Biotechnology Present Scenario And Future Trends and write the review.

Applied Environmental Biotechnology: Present Scenario and Future Trends is designed to serve as a reference book for students and researchers working in the area of applied environmental science. It presents various applications of environmental studies that involve the use of living organisms, bioprocesses engineering technology, and other fields in solving environmental problems like waste and waste waters. It includes not only the pure biological sciences such as genetics, microbiology, biochemistry and chemistry but also from outside the sphere of biology such as chemical engineering, bioprocess engineering, information technology, and biophysics. Starting with the fundamentals of bioremediation, the book introduces various environmental applications such as bioremediation, phytoremediation, microbial diversity in conservation and exploration, in-silico approach to study the regulatory mechanisms and pathways of industrially important microorganisms biological phosphorous removal, ameliorative approaches for management of chromium phytotoxicity, sustainable production of biofuels from microalgae using a biorefinery approach, bioelectrochemical systems (BES) for microbial electroremediation and oil spill remediation. The book has been designed to serve as comprehensive environmental biotechnology textbooks as well as wide-ranging reference books. Environmental remediation, pollution control, detection and monitoring are evaluated considering the achievement as well as the perspectives in the development of environmental biotechnology. Various relevant articles are chosen up to illustrate the main areas of environmental biotechnology: industrial waste water treatment, soil treatment, oil remediation, phytoremediation, microbial electro remediation and development of biofuels dealing with microbial and process engineering aspects. The distinct role of environmental biotechnology in future is emphasized considering the opportunities to contribute with new approached and directions in remediation of contaminated environment, minimising waste releases and development pollution prevention alternatives at before and end of pipe.
Editors: Dr. Korla Swapnavahini, Dr. P. Mahalakshmi, Dr. S. Carmel Punitha, Dr. D. Jayarajan, and Dr. Sunanda Shashikant Aswale All rights reserved. No part of this publication may be reproduced or transmitted, in any form or by any means, without permission. Any person who does any unauthorized act in relation to this publication may be liable for criminal prosecution and civil claims for damages. First Published, 2023 ISBN: 978-625-8284-30-0 (Turkey) Yayımcı Hukuki Adı (Publisher Legal Name) GLOBAL ACADEMY YAYINCILIK VE DANIŞMANLIK HİZMETLERİ SANAYİ TİCARET LİMİTED ŞİRKETİ Published by: GLOBAL ACADEMY GLOBAL ACADEMY YAYINCILIK VE DANIŞMANLIK HİZMETLERİ SANAYİ TİCARET LİMİTED ŞİRKETİ E-mail: [email protected] Website: https://www.globalacademy.com.tr
Production of Top 12 Biochemicals Selected by USDOE from Renewable Resources: Status and Innovation covers all important technological aspects of the production of biochemicals from renewable feedstock. All the important technological aspects of biomass conversion for example biomass pretreatment, enzymatic hydrolysis for cellulosic sugars production followed by the fermentation into chemicals and downstream recovery of the products is reviewed. Recent technological advancements in suitable microorganism development, bioprocess engineering for biomass conversion for cellulosic sugars production and various fermentation strategies and downstream recovery of these top 12 products is presented. Each bio-chemical selected by US Department of Energy i.e. ethanol, xylitol/sorbitol, furans (5-HMF, 2,5-FDCA,), glycerol & its derivatives, hydrocarbons) isoprene, iso-butadienes and others), lactic acid, succinic acid, 3-hydroxy propionic acid, levulinic acid and biohydrogen/biogas is included in a single book chapter. In addition to the technical aspects of these 12 biochemicals, general technological challenges dealing with lignocellulose refining, perspectives and solutions are elaborated in the book. Also, life cycle analysis, techno-economic viability, and sustainability index of biofuels/biochemicals are comprehensively reviewed in the book. - covers uniquely designed scientific and technical literature on USDOE top listed biochemicals production with clear images and tables in the context of biomass valorisation - Includes the clear and simplistic illustration of technological updates on biomass processing, system biology, microbial fermentation, catalysis, regeneration and monitoring of renewable energy and chemicals production - Presents fast and reliable source of information on techno-economic analysis, life cycle analysis, technological scouting at industrial scale - Entails fundamental aspects, recent developments in production of renewable chemicals as building block materials for commodity chemicals production
Nanoarchitectures Built with Carbon Nanotubes and Magnetic Nanoparticles, Volume 630, the latest volume in the Methods in Enzymology series, continues the legacy of this premier serial with quality chapters authored by leaders in the field. New chapters in this volume include updates from well-known, established leaders.
Fungi range from being microscopic, single-celled yeasts to multicellular and heterotrophic in nature. Fungal communities have been found in vast ranges of environmental conditions. They can be associated with plants epiphytically, endophytically, or rhizospherically. Extreme environments represent unique ecosystems that harbor novel biodiversity of fungal communities. Interest in the exploration of fungal diversity has been spurred by the fact that fungi perform numerous functions integral in sustaining the biosphere, ranging from nutrient cycling to environmental detoxification, which involves processes like augmentation, supplementation, and recycling of plant nutrients--a particularly important process in sustainable agriculture. Fungal communities from natural and extreme habitats help promote plant growth, enhance crop yield, and soil fertility via direct or indirect plant growth promoting (PGP) mechanisms of solubilization of phosphorus, potassium, and zinc, production of ammonia, hydrogen cyanides, phytohormones, Fe-chelating compounds, extracellular hydrolytic enzymes, and bioactive secondary metabolites. These PGP fungi could be used as biofertilizers, bioinoculants, and biocontrol agents in place of chemical fertilizers and pesticides in eco-friendly manners for sustainable agriculture and environments. Along with agricultural applications, medically important fungi play significant role for human health. Fungal communities are useful for sustainable environments as they are used for bioremediation which is the use of microorganisms' metabolism to degrading waste contaminants (sewage, domestic, and industrial effluents) into non-toxic or less toxic materials by natural biological processes. Fungi could be used as mycoremediation for the future of environmental sustainability. Fungi and fungal products have the biochemical and ecological capability to degrade environmental organic chemicals and to decrease the risk associated with metals, semi-metals, and noble metals either by chemical modification or by manipulating chemical bioavailability. The two volumes of "Recent Trends in Mycological Research” aim to provide an understanding of fungal communities from diverse environmental habitats and their potential applications in agriculture, medical, environments and industry. The books are useful to scientists, researchers, and students involved in microbiology, biotechnology, agriculture, molecular biology, environmental biology and related subjects.
This book is the second in a two-volume set devoted to bioelectrochemical systems (BESs) and the opportunities that they may offer in providing a green solution to growing energy demands worldwide. While the first volume explains principles and processes, in this volume established research professionals shed light on how this technology can be used to generate high-value chemicals and energy using organic wastes. Bioelectricity is generated in microbial fuel cells (MFCs) under oxygen-depleted conditions, where microbial bioconversion reactions transform organic wastes into electrons. Dedicated chapters focus on MFCs and state of the art advancements as well as current limitations. In addition, the book covers the use of microbial biofilm- and algae-based bioelectrochemical systems for bioremediation and co-generation of valuable chemicals. A thorough review of the performance of this technology and its possible industrial applications is presented. The book is designed for a broad audience, including undergraduates, postgraduates, energy researchers/scientists, policymakers, and anyone else interested in the latest developments in this field.
This book introduces the innovative and emerging microbial technologies for the treatment, recycling, and management of industrial, domestic, and municipal water and other wastewater in an environment-friendly and cost-effective manner. It discusses existing methods and technologies, up-gradation of existing technologies, and new technologies. It also highlights opportunities in the existing technologies along with industrial practices and real-life case studies.
Bioremediation: A Sustainable Approach to Preserving Earth’s Water discusses the latest research in green chemistry practices and principles that are involved in water remediation and the quality improvement of water. The presence of heavy metals, dyes, fluoride, dissolved solids and many other pollutants are responsible for water pollution and poor water quality. The removal of these pollutants in water resources is necessary, yet challenging. Water preservation is of great importance globally and researchers are making significant progress in ensuring this precious commodity is safe and potable. This volume illustrates how bioremediation in particular is a promising green technique globally. Features: Addresses bioremediation of all the major water pollutants Approaches the chemistry of water and the concept of water as a renewable resource from a green chemistry aspect Discusses environmental chemistry and the practice of industrial ecology Explains the global concern of adequate high quality water supplies, and how bioremediation can resolve this Explores sustainable development through green engineering
Bio Refinery of Wastewater Treatment: Way to Generate Waste to Value focuses on the exploitation of various wastewater treatment technologies and microbial, chemical, and physical processes as tools for simultaneous value generation during treatment, degradation, detoxification, and stabilization of toxic and hazardous contaminants and restoring contaminated sites. The book provides recents advancements in integrative and cost-effective wastewater treatment strategies and stipulates all pros and cons of each strategy. Bio Refinery of Wastewater Treatment: Way to Generate Waste to Value is valuable to researchers and scientists, who are working in the field of effluent treatment plants/biodegradation of environmental contaminants for environmental protection and sustainable development. - Provides natural and eco-friendly solutions to deal with the problem of pollution aiming value generation - Details underlying mechanisms of biorefinery approach associated microbes for simultaneous value generation and removal of emerging contaminants - Illustrates numerous successful field studies on the application of bio-refinery approach for eco-restoration of contaminated sites - Presents recent advances and challenges in biorefinery research and applications for sustainable development