Download Free Applied Electromagnetism And Materials Book in PDF and EPUB Free Download. You can read online Applied Electromagnetism And Materials and write the review.

This textbook can be used to teach electromagnetism to a wide range of undergraduate science majors in physics, electrical engineering or materials science. By making lesser demands on mathematical knowledge than typical texts, and by emphasizing electromagnetic properties of materials and their applications, this text is particularly appropriate for students of materials science. Many competing books focus on the study of propagation waves either in the microwave or optical domain, whereas Basic Electromagnetism and Materials covers the entire electromagnetic domain and the physical response of materials to these waves.
This book presents practical and relevant technological information about electromagnetic properties of materials and their applications. It is aimed at senior undergraduate and graduate students in materials science and is the product of many years of teaching basic and applied electromagnetism. Topics range from the spectroscopy and characterization of dielectrics, to non-linear effects, to ion-beam applications in materials.
Modern technology is rapidly developing and for this reason future engineers need to acquire advanced knowledge in science and technology, including electromagnetic phenomena. This book is a contemporary text of a one-semester course for junior electrical engineering students. It covers a broad spectrum of electromagnetic phenomena such as, surface waves, plasmas, photonic crystals, negative refraction as well as related materials including superconductors. In addition, the text brings together electromagnetism and optics as the majority of texts discuss electromagnetism disconnected from optics. In contrast, in this book both are discussed. Seven labs have been developed to accompany the material of the book.
This textbook can be used to teach electromagnetism to a wide range of undergraduate science majors in physics, electrical engineering or materials science. By making lesser demands on mathematical knowledge than typical texts, and by emphasizing electromagnetic properties of materials and their applications, this text is particularly appropriate for students of materials science. Many competing books focus on the study of propagation waves either in the microwave or optical domain, whereas Basic Electromagnetism and Materials covers the entire electromagnetic domain and the physical response of materials to these waves.
In their successful text, Shen and Kong cover fundamentals of static and dynamic electromagnetism fields and waves. The authors employ a unique approach, beginning with a study of Maxwell's equations and waves and covering electromagnetic fields later. This presentation allows students to work with electromagnetic concepts using relatively simple computational analysis, building in a logical progression to more complex topics and mathematical methods for analysis. The Third Edition provides computer-based problems, homework problems, end-of-chapter summaries, and a rich collection of real-world application examples that include discussion of cellular phone and microwave exposure limits set by IEEE; safety concerns about electromagnetic fields from power lines; new and powerful magnets; and single-mode optical fibers.
Applied Electromagnetics and Electromagnetic Compatibility deals with Radio Frequency Interference (RFI), which is the reception of undesired radio signals originating from digital electronics and electronic equipment. With today's rapid development of radio communication, these undesired signals as well as signals due to natural phenomena such as lightning, sparking, and others are becoming increasingly important in the general area of Electro Magnetic Compatibility (EMC). EMC can be defined as the capability of some electronic equipment or system to be operated at desired levels of performance in a given electromagnetic environment without generating EM emissions unacceptable to other systems operating in the vicinity.
CD-ROM contains: Demonstration exercises -- Complete solutions -- Problem statements.
STUDENT COMPANION SITE Every new copy of Stuart Wentworth's Applied Electromagnetics comes with a registration code which allows access to the Student's Book Companion Site. On the BCS the student will find: * Detailed Solutions to Odd-Numbered Problems in the text * Detailed Solutions to all Drill Problems from the text * MATLAB code for all the MATLAB examples in the text * Additional MATLAB demonstrations with code. This includes a Transmission Lines simulator created by the author. * Weblinks to a vast array of resources for the engineering student. Go to www.wiley.com/college/wentworth to link to Applied Electromagnetics and the Student Companion Site. ABOUT THE PHOTO Passive RFID systems, consisting of readers and tags, are expected to replace bar codes as the primary means of identification, inventory and billing of everyday items. The tags typically consist of an RFID chip placed on a flexible film containing a planar antenna. The antenna captures radiation from the reader's signal to power the tag electronics, which then responds to the reader's query. The PENI Tag (Product Emitting Numbering Identification Tag) shown, developed by the University of Pittsburgh in a team led by Professor Marlin H. Mickle, integrates the antenna with the rest of the tag electronics. RFID systems involve many electomagnetics concepts, including antennas, radiation, transmission lines, and microwave circuit components. (Photo courtesy of Marlin H. Mickle.)
Analytical Modeling in Applied Electromagnets encompasses the most complete treatment on the subject published to date, focusing on the nature of models in radio engineering. This leading-edge resource brings you detailed coverage of the latest topics, including metamaterials, photonic bandgaps and artificial impedance surfaces, and applies these concepts to a wide range of applications. The book provides you with working examples that are mainly directed to antenna applications, but the modeling methods and results can be used for other practical devices as well.
Included topics: Electromagnetism and Electrical Engineering, Electromagentic Fields and their Sources, Time-varying Currents and Fields in Conductors, Electromagnetic Radiation I, Electromagnetic Problems.