Download Free Applied Electromagnetic Engineering Book in PDF and EPUB Free Download. You can read online Applied Electromagnetic Engineering and write the review.

In their successful text, Shen and Kong cover fundamentals of static and dynamic electromagnetism fields and waves. The authors employ a unique approach, beginning with a study of Maxwell's equations and waves and covering electromagnetic fields later. This presentation allows students to work with electromagnetic concepts using relatively simple computational analysis, building in a logical progression to more complex topics and mathematical methods for analysis. The Third Edition provides computer-based problems, homework problems, end-of-chapter summaries, and a rich collection of real-world application examples that include discussion of cellular phone and microwave exposure limits set by IEEE; safety concerns about electromagnetic fields from power lines; new and powerful magnets; and single-mode optical fibers.
Computer Engineering in Applied Electromagnetism contains papers which were presented at the International Symposium on Electromagnetic Fields in Electrical Engineering, held in Maribor, Slovenia, 18-20 September 2003. It consists of three parts, Computational Techniques, Electromagnetic Engineering, and Special Applications. The contributions selected for the book cover a wide spectrum of theory and practice, being simultaneously of high theoretical level and deeply rooted in engineering problems. Thus, this volume touches on what is of key importance in electromagnetism.
Applied Electromagnetics and Electromagnetic Compatibility deals with Radio Frequency Interference (RFI), which is the reception of undesired radio signals originating from digital electronics and electronic equipment. With today's rapid development of radio communication, these undesired signals as well as signals due to natural phenomena such as lightning, sparking, and others are becoming increasingly important in the general area of Electro Magnetic Compatibility (EMC). EMC can be defined as the capability of some electronic equipment or system to be operated at desired levels of performance in a given electromagnetic environment without generating EM emissions unacceptable to other systems operating in the vicinity.
Included topics: Electromagnetism and Electrical Engineering, Electromagentic Fields and their Sources, Time-varying Currents and Fields in Conductors, Electromagnetic Radiation I, Electromagnetic Problems.
Modern technology is rapidly developing and for this reason future engineers need to acquire advanced knowledge in science and technology, including electromagnetic phenomena. This book is a contemporary text of a one-semester course for junior electrical engineering students. It covers a broad spectrum of electromagnetic phenomena such as, surface waves, plasmas, photonic crystals, negative refraction as well as related materials including superconductors. In addition, the text brings together electromagnetism and optics as the majority of texts discuss electromagnetism disconnected from optics. In contrast, in this book both are discussed. Seven labs have been developed to accompany the material of the book.
CD-ROM contains: Demonstration exercises -- Complete solutions -- Problem statements.
Analytical Modeling in Applied Electromagnets encompasses the most complete treatment on the subject published to date, focusing on the nature of models in radio engineering. This leading-edge resource brings you detailed coverage of the latest topics, including metamaterials, photonic bandgaps and artificial impedance surfaces, and applies these concepts to a wide range of applications. The book provides you with working examples that are mainly directed to antenna applications, but the modeling methods and results can be used for other practical devices as well.
Balanis’ second edition of Advanced Engineering Electromagnetics – a global best-seller for over 20 years – covers the advanced knowledge engineers involved in electromagnetic need to know, particularly as the topic relates to the fast-moving, continually evolving, and rapidly expanding field of wireless communications. The immense interest in wireless communications and the expected increase in wireless communications systems projects (antenna, microwave and wireless communication) points to an increase in the number of engineers needed to specialize in this field. In addition, the Instructor Book Companion Site contains a rich collection of multimedia resources for use with this text. Resources include: Ready-made lecture notes in Power Point format for all the chapters. Forty-nine MATLAB® programs to compute, plot and animate some of the wave phenomena Nearly 600 end-of-chapter problems, that's an average of 40 problems per chapter (200 new problems; 50% more than in the first edition) A thoroughly updated Solutions Manual 2500 slides for Instructors are included.
Electromagnetic fields, both static and dynamic, form the foundational basis of all electrical and electronic engineering devices and systems. Aimed at undergraduate students, university teachers, design and consultant engineers and researchers this book presents an in-depth, simple and comprehensive reference source on electromagnetics engineering.In much of electrical and electronics engineering (including: analogue and digital telecommunications engineering; biomedical monitoring and diagnostic equipment; power systems engineering and sensor technology) getting back to the fundamental principles that govern the technologies, namely electromagnetic fields and waves, has become crucial for future customer friendly technology and systems. Electromagnetics Engineering Handbook has been written to enable undergraduate students studying electromagnetics engineering for the first time to gain an understanding of the essentials of the largely invisible, but powerful, electromagnetic fields governed by the four elegant Maxwell's equations. Moreover, the book helps to apply that knowledge through analytical and computational solutions of these frequency and material dependent electric and magnetic fields. As electrical and electronic engineering grows and subdivides into many specialities this book aims to inform the reader of the basic principles that govern all of these specialised systems and on how to apply that knowledge to understand and design devices and systems that may operate at vastly different frequencies and in various media (e.g. semiconductor materials, magnetic materials, biological tissues, outer space and sea water). It also deals with a range of different functions dependant on the area of application. For example at very low power frequencies electromagnetic fields perform vastly different functions from device to device, such as in power transformers; current transformers; infrared sensors; synchronous generators; superconducting devices; electric motors and electric powered transport systems. This handbook will be of great help to students, engineers, innovators and researchers working in a wide variety of disciplines