Download Free Applied And Computational Complex Analysis 3 Volume Set Book in PDF and EPUB Free Download. You can read online Applied And Computational Complex Analysis 3 Volume Set and write the review.

Presents applications as well as the basic theory of analytic functions of one or several complex variables. The first volume discusses applications and basic theory of conformal mapping and the solution of algebraic and transcendental equations. Volume Two covers topics broadly connected with ordinary differental equations: special functions, integral transforms, asymptotics and continued fractions. Volume Three details discrete fourier analysis, cauchy integrals, construction of conformal maps, univalent functions, potential theory in the plane and polynomial expansions.
Presents applications as well as the basic theory of analytic functions of one or several complex variables. The first volume discusses applications and basic theory of conformal mapping and the solution of algebraic and transcendental equations. Volume Two covers topics broadly connected with ordinary differental equations: special functions, integral transforms, asymptotics and continued fractions. Volume Three details discrete fourier analysis, cauchy integrals, construction of conformal maps, univalent functions, potential theory in the plane and polynomial expansions.
A self-contained presentation of the major areas of complex analysis that are referred to and used in applied mathematics and mathematical physics. Topics discussed include infinite products, ordinary differential equations and asymptotic methods.
This radical first course on complex analysis brings a beautiful and powerful subject to life by consistently using geometry (not calculation) as the means of explanation. Aimed at undergraduate students in mathematics, physics, and engineering, the book's intuitive explanations, lack of advanced prerequisites, and consciously user-friendly prose style will help students to master the subject more readily than was previously possible. The key to this is the book's use of new geometric arguments in place of the standard calculational ones. These geometric arguments are communicated with the aid of hundreds of diagrams of a standard seldom encountered in mathematical works. A new approach to a classical topic, this work will be of interest to students in mathematics, physics, and engineering, as well as to professionals in these fields.
This book provides the essential foundations of both linear and nonlinear analysis necessary for understanding and working in twenty-first century applied and computational mathematics. In addition to the standard topics, this text includes several key concepts of modern applied mathematical analysis that should be, but are not typically, included in advanced undergraduate and beginning graduate mathematics curricula. This material is the introductory foundation upon which algorithm analysis, optimization, probability, statistics, differential equations, machine learning, and control theory are built. When used in concert with the free supplemental lab materials, this text teaches students both the theory and the computational practice of modern mathematical analysis. Foundations of Applied Mathematics, Volume 1: Mathematical Analysis includes several key topics not usually treated in courses at this level, such as uniform contraction mappings, the continuous linear extension theorem, Daniell?Lebesgue integration, resolvents, spectral resolution theory, and pseudospectra. Ideas are developed in a mathematically rigorous way and students are provided with powerful tools and beautiful ideas that yield a number of nice proofs, all of which contribute to a deep understanding of advanced analysis and linear algebra. Carefully thought out exercises and examples are built on each other to reinforce and retain concepts and ideas and to achieve greater depth. Associated lab materials are available that expose students to applications and numerical computation and reinforce the theoretical ideas taught in the text. The text and labs combine to make students technically proficient and to answer the age-old question, "When am I going to use this?
This Book Is Intended To Be A Simple And Easy Introduction To The Subject. It Is Meant As A Textbook For A Course In Complex Analysis At Postgraduate Level Of Indian Universities.Some Of The Welcome Features Of The Book Are: Proofs And Motivation For The Theory: Examples Are Provided To Illustrate The Concepts; Exercises Of Various Levels Of Difficulty Are Given At The End Of Every Chapter: Keeping In View The Applied Nature Of The Subject, Ordinary Linear Homogeneous Differential Equations Of The Second Order And Conformal Mapping And Its Applications Are Given More Attention Than Most Other Books: Uniform Approximation And Elliptic Functions Are Treated In Great Detail; There Is Also A Detailed Treatment Of Harmonic Functions, Weierstrass Approximation Theorem, Analytic Continuation, Riemann Mapping Theorem, Homological Version OfCauchys Theorem And Its Applications; Diagrams Are Provided Whenever Feasible To Help The Reader Develop Skill In Using Imagination To Visualise Abstract Ideas; Solutions To Some Selected Exercises Which Involve Lot Of New Ideas And Theoretical Considerations Have Been Provided At The End.
Learn to write programs to solve ordinary and partial differential equations The Second Edition of this popular text provides an insightful introduction to the use of finite difference and finite element methods for the computational solution of ordinary and partial differential equations. Readers gain a thorough understanding of the theory underlying themethods presented in the text. The author emphasizes the practical steps involved in implementing the methods, culminating in readers learning how to write programs using FORTRAN90 and MATLAB(r) to solve ordinary and partial differential equations. The book begins with a review of direct methods for the solution of linear systems, with an emphasis on the special features of the linear systems that arise when differential equations are solved. The following four chapters introduce and analyze the more commonly used finite difference methods for solving a variety of problems, including ordinary and partial differential equations and initial value and boundary value problems. The techniques presented in these chapters, with the aid of carefully developed exercises and numerical examples, can be easilymastered by readers. The final chapter of the text presents the basic theory underlying the finite element method. Following the guidance offered in this chapter, readers gain a solid understanding of the method and discover how to use it to solve many problems. A special feature of the Second Edition is Appendix A, which describes a finite element program, PDE2D, developed by the author. Readers discover how PDE2D can be used to solve difficult partial differential equation problems, including nonlinear time-dependent and steady-state systems, and linear eigenvalue systems in 1D intervals, general 2D regions, and a wide range of simple 3D regions. The software itself is available to instructors who adopt the text to share with their students.
An easily accessible introduction to over three centuries of innovations in geometry Praise for the First Edition “. . . a welcome alternative to compartmentalized treatments bound to the old thinking. This clearly written, well-illustrated book supplies sufficient background to be self-contained.” —CHOICE This fully revised new edition offers the most comprehensive coverage of modern geometry currently available at an introductory level. The book strikes a welcome balance between academic rigor and accessibility, providing a complete and cohesive picture of the science with an unparalleled range of topics. Illustrating modern mathematical topics, Introduction to Topology and Geometry, Second Edition discusses introductory topology, algebraic topology, knot theory, the geometry of surfaces, Riemann geometries, fundamental groups, and differential geometry, which opens the doors to a wealth of applications. With its logical, yet flexible, organization, the Second Edition: • Explores historical notes interspersed throughout the exposition to provide readers with a feel for how the mathematical disciplines and theorems came into being • Provides exercises ranging from routine to challenging, allowing readers at varying levels of study to master the concepts and methods • Bridges seemingly disparate topics by creating thoughtful and logical connections • Contains coverage on the elements of polytope theory, which acquaints readers with an exposition of modern theory Introduction to Topology and Geometry, Second Edition is an excellent introductory text for topology and geometry courses at the upper-undergraduate level. In addition, the book serves as an ideal reference for professionals interested in gaining a deeper understanding of the topic.
A balanced and clearly explained treatment of infinity in mathematics. The concept of infinity has fascinated and confused mankind for centuries with concepts and ideas that cause even seasoned mathematicians to wonder. For instance, the idea that a set is infinite if it is not a finite set is an elementary concept that jolts our common sense and imagination. the Mathematics of Infinity: A guide to Great Ideas uniquely explores how we can manipulate these ideas when our common sense rebels at the conclusions we are drawing. Writing with clear knowledge and affection for the subject, the author introduces and explores infinite sets, infinite cardinals, and ordinals, thus challenging the readers' intuitive beliefs about infinity. Requiring little mathematical training and a healthy curiosity, the book presents a user-friendly approach to ideas involving the infinite. readers will discover the main ideas of infinite cardinals and ordinal numbers without experiencing in-depth mathematical rigor. Classic arguments and illustrative examples are provided throughout the book and are accompanied by a gradual progression of sophisticated notions designed to stun your intuitive view of the world. With a thoughtful and balanced treatment of both concepts and theory, The Mathematics of Infinity focuses on the following topics: * Sets and Functions * Images and Preimages of Functions * Hilbert's Infinite Hotel * Cardinals and Ordinals * The Arithmetic of Cardinals and Ordinals * the Continuum Hypothesis * Elementary Number Theory * The Riemann Hypothesis * The Logic of Paradoxes Recommended as recreational reading for the mathematically inquisitive or as supplemental reading for curious college students, the Mathematics of Infinity: A Guide to Great Ideas gently leads readers into the world of counterintuitive mathematics.
A hands-on introduction to the tools needed for rigorous and theoretical mathematical reasoning Successfully addressing the frustration many students experience as they make the transition from computational mathematics to advanced calculus and algebraic structures, Theorems, Corollaries, Lemmas, and Methods of Proof equips students with the tools needed to succeed while providing a firm foundation in the axiomatic structure of modern mathematics. This essential book: Clearly explains the relationship between definitions, conjectures, theorems, corollaries, lemmas, and proofs Reinforces the foundations of calculus and algebra Explores how to use both a direct and indirect proof to prove a theorem Presents the basic properties of real numbers/li> Discusses how to use mathematical induction to prove a theorem Identifies the different types of theorems Explains how to write a clear and understandable proof Covers the basic structure of modern mathematics and the key components of modern mathematics A complete chapter is dedicated to the different methods of proof such as forward direct proofs, proof by contrapositive, proof by contradiction, mathematical induction, and existence proofs. In addition, the author has supplied many clear and detailed algorithms that outline these proofs. Theorems, Corollaries, Lemmas, and Methods of Proof uniquely introduces scratch work as an indispensable part of the proof process, encouraging students to use scratch work and creative thinking as the first steps in their attempt to prove a theorem. Once their scratch work successfully demonstrates the truth of the theorem, the proof can be written in a clear and concise fashion. The basic structure of modern mathematics is discussed, and each of the key components of modern mathematics is defined. Numerous exercises are included in each chapter, covering a wide range of topics with varied levels of difficulty. Intended as a main text for mathematics courses such as Methods of Proof, Transitions to Advanced Mathematics, and Foundations of Mathematics, the book may also be used as a supplementary textbook in junior- and senior-level courses on advanced calculus, real analysis, and modern algebra.