Download Free Applications Of Remote Sensing To Fisheries And Coastal Resources Book in PDF and EPUB Free Download. You can read online Applications Of Remote Sensing To Fisheries And Coastal Resources and write the review.

The publication is an easy-to-understand publication that emphasizes the fundamental skills and processes associated with geographic information systems (GIS) and remote sensing. The first chapter initially puts the array of spatially related problems into perspective and discusses the earlier applications of GIS and remote sensing. Chapters, 2, 3 and 4 outline what are considered to be the basics on which GIS can function, i.e. hardware and software; spatial data; and how GIS systems themselves are best implemented. Chapter 5 looks at preparing the data for GIS use and Chapter 6 explores what remote sensing consists of and the main purposes for its use. Chapter 7 discusses the functional tools and techniques offered by typical GIS software packages. Chapters 8, 9 and 10 examine respectively, the current issues and status, including extensive case studies, of the application of GIS and remote sensing to aquaculture, to inland fisheries and to marine fisheries.
Remote sensing stands as the defining technology in our ability to monitor coral reefs, as well as their biophysical properties and associated processes, at regional to global scales. With overwhelming evidence that much of Earth’s reefs are in decline, our need for large-scale, repeatable assessments of reefs has never been so great. Fortunately, the last two decades have seen a rapid expansion in the ability for remote sensing to map and monitor the coral reef ecosystem, its overlying water column, and surrounding environment. Remote sensing is now a fundamental tool for the mapping, monitoring and management of coral reef ecosystems. Remote sensing offers repeatable, quantitative assessments of habitat and environmental characteristics over spatially extensive areas. As the multi-disciplinary field of coral reef remote sensing continues to mature, results demonstrate that the techniques and capabilities continue to improve. New developments allow reef assessments and mapping to be performed with higher accuracy, across greater spatial areas, and with greater temporal frequency. The increased level of information that remote sensing now makes available also allows more complex scientific questions to be addressed. As defined for this book, remote sensing includes the vast array of geospatial data collected from land, water, ship, airborne and satellite platforms. The book is organized by technology, including: visible and infrared sensing using photographic, multispectral and hyperspectral instruments; active sensing using light detection and ranging (LiDAR); acoustic sensing using ship, autonomous underwater vehicle (AUV) and in-water platforms; and thermal and radar instruments. Emphasis and Audience This book serves multiple roles. It offers an overview of the current state-of-the-art technologies for reef mapping, provides detailed technical information for coral reef remote sensing specialists, imparts insight on the scientific questions that can be tackled using this technology, and also includes a foundation for those new to reef remote sensing. The individual sections of the book include introductory overviews of four main types of remotely sensed data used to study coral reefs, followed by specific examples demonstrating practical applications of the different technologies being discussed. Guidelines for selecting the most appropriate sensor for particular applications are provided, including an overview of how to utilize remote sensing data as an effective tool in science and management. The text is richly illustrated with examples of each sensing technology applied to a range of scientific, monitoring and management questions in reefs around the world. As such, the book is broadly accessible to a general audience, as well as students, managers, remote sensing specialists and anyone else working with coral reef ecosystems.
Geoinformatics for Marine and Coastal Management provides a timely and valuable assessment of the current state of the art geoinformatics tools and methods for the management of marine systems. This book focuses on the cutting-edge coverage of a wide spectrum of activities and topics such as GIS-based application of drainage basin analysis, contribution of ontology to marine management, geoinformatics in relation to fisheries management, hydrography, indigenous knowledge systems, and marine law enforcement. The authors present a comprehensive overview of the field of Geoinformatic Applications in Marine Management covering key issues and debates with specific case studies illustrating real-world applications of the GIS technology. This "box of tools" serves as a long-term resource for coastal zone managers, professionals, practitioners, and students alike on the management of oceans and the coastal fringe, promoting the approach of allowing sustainable and integrated use of oceans to maximize opportunities while keeping risks and hazards to a minimum.
The Handbook provides a detailed evaluation of what can realistically be achieved by remote sensing in an operational coastal management context. It takes the user through the planning and implementation of remote sensing projects from the setting of realistic objectives, deciding which imagery will be most appropriate to achieve those objectives, the acquisition, geometric and radiometric correction of imagery, the field survey methods needed to ground-truth the imagery and guide image classification, the image processing techniques required to optimise outputs, through the image interpretation and evaluation of the accuracy of outputs. Linked to the Handbook is a computer-based remote sensing distance-learning module: Applications of satellite and airborne image data to coastal management available free of charge via www.unesco.bilko.org
Inventory and monitoring of coastal aquaculture and fisheries structures provide important baseline data for decision-making in planning and development, including regulatory laws, environmental protection and revenue collection. Mapping these structures can be performed with good accuracy and at regular intervals by satellite remote sensing, which allows observation of vast areas, often of difficult accessibility, at a fraction of cost of traditional surveys. This study is based on interpretation of satellite imaging radar data and a detailed image analysis procedure id described. The report aims at the necessary technology transfer for and operational use of the approach indicated in other similar environments.
Marine and coastal applications of GIS are finally gaining wide acceptance in scientific as well as GIS communities, and cover the fields of deep sea geology, chemistry and biology, and coastal geology, biology, engineering and resource management. Comprising rigorous contributions from a group of leading scholars in marine and coastal GIS, this book will inspire and stimulate continued research in this important new application domain. Launched as a project to mark the UN International Year of the Ocean (1998) and supported by the International Geographical Union's Commission on Coastal Systems, this book covers progress and research in the marine and coastal realms, in the areas of theory, applications and empirical results. It is the first book of its kind to address basic and applied scientific problems in deep sea and coastal science using GIS and remote sensing technologies. It is designed for GIS and remote sensing specialists, but also for those with an interest in oceans, lakes and shores. Coverage ranges from seafloor spreading centres to Exclusive Economic Zones to microscale coastal habitats; and techniques include submersibles, computer modelling, image display, 3-D temporal data visualization, and development and application of new algorithms and spatial data structures. It illustrates the broad usage of GIS, image processing, and computer modelling in deep sea and coastal environments, and also addresses important institutional issues arising out of the use of these technologies.
Part of an ongoing series of manuals covering the range of applications of remotely sensed imagery, Volume 4 addresses the use of this technology in natural resource management and environmental monitoring. Comprehensive, authoritative, and up-to-date, it covers terrestrial ecosystems, aquatic ecosystems, and agriculture ecosystems, as well as future directions in technology and research.
This book is geared for advanced level research in the general subject area of remote sensing and modeling as they apply to the coastal marine environment. The various chapters focus on the latest scientific and technical advances in the service of better understanding coastal marine environments for their care, conservation and management. Chapters specifically deal with advances in remote sensing coastal classifications, environmental monitoring, digital ocean technological advances, geophysical methods, geoacoustics, X-band radar, risk assessment models, GIS applications, real-time modeling systems, and spatial modeling. Readers will find this book useful because it summarizes applications of new research methods in one of the world’s most dynamic and complicated environments. Chapters in this book will be of interest to specialists in the coastal marine environment who deals with aspects of environmental monitoring and assessment via remote sensing techniques and numerical modeling.
The late 20th century has witnessed increasing crises in the world's marine fisheries. A causal analysis of these reveals that a common element are various manifestations of spatial inequity. This most frequently includes the inequity of access rights to the resource, but factors such as variations in resource depletion, spatio-temporal variations in stock recruitment, the imposition of regulatory zoning, destruction of marine ecosystems and the siting of mariculture facilities are other examples. To resolve some of these problems, management practices must be improved. As has been shown in other fields where spatially related problems occur, there is now a promising tool, Geographical Information Systems (GIS), which, combined with other analytical tools and models, could allow for improved spatial management. GIS are basically integrated computer based systems which allow for the input of digital geo-referenced data to produce maps plus other textual, graphical and tabular output. The essential usefulness of GIS however, lies in its ability to manipulate data in a large number of ways and to perform various analytical functions so as to produce output which makes for more efficient decision making.As with many computer based systems, the key to GIS success lies in the acquisition of suitable data. The various means by which both primary and secondary data can be located, gathered, accessed and stored are described.