Download Free Applications Of Mathematics Of Uncertainty Book in PDF and EPUB Free Download. You can read online Applications Of Mathematics Of Uncertainty and write the review.

This book provides an examination of major problems facing the world using mathematics of uncertainty. These problems include climate change, coronavirus pandemic, human tracking, biodiversity, and other grand challenges. Mathematics of uncertainty is used in a modern more general sense than traditional mathematics. Since accurate data is impossible to obtain concerning human tracking and other global problems, mathematics of uncertainty is an ideal discipline to study these problems. The authors place several scientific studies into different mathematical settings such as nonstandard analysis and soft logic. Fuzzy differentiation is used to model the spread of diseases such as the coronavirus. The book uses fuzzy graph theory to examine the problems of human tracking and illegal immigration. The book is an excellent reference source for advanced under-graduate and graduate students in mathematics and the social sciences as well as for researchers and teachers.
This book provides an examination of major problems facing the world using mathematics of uncertainty. These problems include climate change, coronavirus pandemic, human tracking, biodiversity, and other grand challenges. Mathematics of uncertainty is used in a modern more general sense than traditional mathematics. Since accurate data is impossible to obtain concerning human tracking and other global problems, mathematics of uncertainty is an ideal discipline to study these problems. The authors place several scientific studies into different mathematical settings such as nonstandard analysis and soft logic. Fuzzy differentiation is used to model the spread of diseases such as the coronavirus. The book uses fuzzy graph theory to examine the problems of human tracking and illegal immigration. The book is an excellent reference source for advanced under-graduate and graduate students in mathematics and the social sciences as well as for researchers and teachers.
"Mathematics of Uncertainty" provides the basic ideas and foundations of uncertainty, covering the fields of mathematics in which uncertainty, variability, imprecision and fuzziness of data are of importance. This introductory book describes the basic ideas of the mathematical fields of uncertainty from simple interpolation to wavelets, from error propagation to fuzzy sets and neural networks. The book presents the treatment of problems of interpolation and approximation, as well as observation fuzziness which can essentially influence the preciseness and reliability of statements on functional relationships. The notions of randomness and probability are examined as a model for the variability of observation and measurement results. Besides these basic ideas the book also presents methods of qualitative data analysis such as cluster analysis and classification, and of evaluation of functional relationships such as regression analysis and quantitative fuzzy data analysis.
This volume is a collection of papers presented at the international conference on Nonlinear Mathematics for Uncertainty and Its Applications (NLMUA2011), held at Beijing University of Technology during the week of September 7--9, 2011. The conference brought together leading researchers and practitioners involved with all aspects of nonlinear mathematics for uncertainty and its applications. Over the last fifty years there have been many attempts in extending the theory of classical probability and statistical models to the generalized one which can cope with problems of inference and decision making when the model-related information is scarce, vague, ambiguous, or incomplete. Such attempts include the study of nonadditive measures and their integrals, imprecise probabilities and random sets, and their applications in information sciences, economics, finance, insurance, engineering, and social sciences. The book presents topics including nonadditive measures and nonlinear integrals, Choquet, Sugeno and other types of integrals, possibility theory, Dempster-Shafer theory, random sets, fuzzy random sets and related statistics, set-valued and fuzzy stochastic processes, imprecise probability theory and related statistical models, fuzzy mathematics, nonlinear functional analysis, information theory, mathematical finance and risk managements, decision making under various types of uncertainty, and others.
This book provides a self-contained, comprehensive and up-to-date presentation of uncertainty theory. The purpose is to equip the readers with an axiomatic approach to deal with uncertainty. For this new edition the entire text has been totally rewritten. The chapters on chance theory and uncertainty theory are completely new. Mathematicians, researchers, engineers, designers, and students will find this work a stimulating and useful reference.
In the ideal world, major decisions would be made based on complete and reliable information available to the decision maker. We live in a world of uncertainties, and decisions must be made from information which may be incomplete and may contain uncertainty. The key mathematical question addressed in this volume is "how to make decision in the presence of quantifiable uncertainty." The volume contains articles on model problems of decision making process in the energy and power industry when the available information is noisy and/or incomplete. The major tools used in studying these problems are mathematical modeling and optimization techniques; especially stochastic optimization. These articles are meant to provide an insight into this rapidly developing field, which lies in the intersection of applied statistics, probability, operations research, and economic theory. It is hoped that the present volume will provide entry to newcomers into the field, and stimulation for further research.
In recent times, polynomial chaos expansion has emerged as a dominant technique to determine the response uncertainties of a system by propagating the uncertainties of the inputs. In this regard, the opening chapter of Uncertainty Quantification: Advances in Research and Applications, an intrusive approach called Galerkin Projection as well as non-intrusive approaches (such as pseudo-spectral projection and linear regression) are discussed.Next, the authors introduce a new methodology to determine the uncertainties of input parameters using CIRCÉ software to overcome the reliance on expert judgment. The goal is to determinate and evaluate the uncertainty bounds for physical models related to reflood model of MARS-KS code Vessel module (coupled with COBRA-TF) using both CIRCÉ and the experimental data of FEBA.Lastly, uncertainties related to rheological model parameters of skeletal muscles are modeled and analyzed, and available data are acquired and fused for hyperelastic constitutive model parameters with Neo-Hookean and Mooney-Rivlin formulations.
Uncertainty is everywhere. It lurks in every consideration of the future - the weather, the economy, the sex of an unborn child - even quantities we think that we know such as populations or the transit of the planets contain the possibility of error. It's no wonder that, throughout that history, we have attempted to produce rigidly defined areas of uncertainty - we prefer the surprise party to the surprise asteroid. We began our quest to make certain an uncertain world by reading omens in livers, tea leaves, and the stars. However, over the centuries, driven by curiosity, competition, and a desire be better gamblers, pioneering mathematicians and scientists began to reduce wild uncertainties to tame distributions of probability and statistical inferences. But, even as unknown unknowns became known unknowns, our pessimism made us believe that some problems were unsolvable and our intuition misled us. Worse, as we realized how omnipresent and varied uncertainty is, we encountered chaos, quantum mechanics, and the limitations of our predictive power. Bestselling author Professor Ian Stewart explores the history and mathematics of uncertainty. Touching on gambling, probability, statistics, financial and weather forecasts, censuses, medical studies, chaos, quantum physics, and climate, he makes one thing clear: a reasonable probability is the only certainty.
This book ranks countries with respect to their achievement of the Sustainable Development Goals and their vulnerability to climate change. Human livelihoods, stable economies, health, and high quality of life all depend on a stable climate and earth system, and a diversity of species and ecosystems. Climate change significantly impacts human trafficking, modern slavery, and global hunger. This book examines these global problems using techniques from mathematics of uncertainty. Since accurate data concerning human trafficking and modern slavery is impossible to obtain, mathematics of uncertainty is an ideal discipline to study these problems. The book also considers the interconnection between climate change, world hunger, human trafficking, modern slavery, and the coronavirus. Connectivity properties of fuzzy graphs are used to examine trafficking flow between regions in the world. The book is an excellent reference source for advanced undergraduate and graduate students in mathematics and the social sciences as well as for researchers and teachers.
This book presents the fundamental notions and advanced mathematical tools in the stochastic modeling of uncertainties and their quantification for large-scale computational models in sciences and engineering. In particular, it focuses in parametric uncertainties, and non-parametric uncertainties with applications from the structural dynamics and vibroacoustics of complex mechanical systems, from micromechanics and multiscale mechanics of heterogeneous materials. Resulting from a course developed by the author, the book begins with a description of the fundamental mathematical tools of probability and statistics that are directly useful for uncertainty quantification. It proceeds with a well carried out description of some basic and advanced methods for constructing stochastic models of uncertainties, paying particular attention to the problem of calibrating and identifying a stochastic model of uncertainty when experimental data is available. This book is intended to be a graduate-level textbook for students as well as professionals interested in the theory, computation, and applications of risk and prediction in science and engineering fields.