Download Free Applications Of Hydrogenation And Dehydrogenation On Noble Metal Catalysts Book in PDF and EPUB Free Download. You can read online Applications Of Hydrogenation And Dehydrogenation On Noble Metal Catalysts and write the review.

Catalytic Hydrogenation over Platinum Metals focuses on catalytic hydrogenation as an effective process in attaining controlled transformations of organic compounds. Composed of contributions of various authors, the book first provides information on catalysts, equipment, and conditions. Catalyst stability and reuse; types of catalyst; platinum metals; and synergism are covered. The text proceeds with discussions on hydrogenation reactors. Topics include atmospheric pressure reactors; low pressure reactors; microreactors; and high pressure reactors. The book also covers hydrogenation of carbon-carbon unsaturation. Catalytic metal; modified catalyst systems; stereochemistry; diacetylenes; and hydrogenolysis are discussed. The text also looks at the hydrogenation of aromatics, nitrogen and carbonyl compounds, and hydrogenolysis. Numerical representations and analysis, diagrams, and reactions of compounds when exposed to different laboratory conditions are considered. The selection is a great source of data for readers interested in studying the process of catalytic hydrogenation.
In this book recent developments in dehydrogenation reactions catalyzed by 3d-metals are discussed. With continue efforts to develop sustainable chemical production the discovery of new catalysts and catalytic procedures for (de)hydrogenation reactions are a subject of great interest to the chemistry community. Additionally, (de)hydrogenation reactions enable the creation of closed-loop production cycles that support a circular economy. The chapters presented include the synthesis of heterocycles and tandem-multicomponent (three or more) reactions through dehydrogenative strategy, as well as the conversion of ethanol to n-butanol, higher oxidized hydrocarbons like acids, ester, amides from alcohols, α-alkylation of amines, ketones, and amides with alcohols and mechanistic understanding of dehydrogenation reactions with high-valent metals. With contributions from experts in the field, the book is a valuable resource for scholars working in the field of organometallic chemistry, catalysis, medicinal chemistry, as well as researchers in the industry.
The present book focuses on advancement in the application of heterogeneous catalytic materials for the dehydrogenative synthesis of valuable organic compounds from substrates such as alcohols and simple aliphatic compounds. Several heterogeneous transition metals-based catalytic materials are explored for the synthesis of valuable chemicals for industrial applications. The book provides insight into the application of state-of-the-art technology for energy utilization and clean chemical synthesis. Features: Offers a wide overview of dehydrogenation catalytic chemistry catalyzed by transition metals and their compounds. Helps design novel and more benign and uncomplicated protocols for the synthesis of valuable chemicals from readily available raw materials. Provides deeper insight into the aspect of dehydrogenation reactions for clean chemical synthesis via a cascade process. Summarizes new mechanistic details of dehydrogenation reactions, experimental side development and applications of dehydrogenation techniques. Explores alternative solutions for the assimilation and transportation of clean energy in the form of hydrogen energy utilization. This book is aimed at graduate students and researchers in chemical engineering, chemistry, catalysis, organic synthesis, pharmaceutical chemistry and petrochemistry.
Pincer Compounds: Chemistry and Applications offers valuable state-of-the-art coverage highlighting highly active areas of research—from mechanistic work to synthesis and characterization. The book focuses on small molecule activation chemistry (particularly H2 and hydrogenation), earth abundant metals (such as Fe), actinides, carbene-pincers, chiral catalysis, and alternative solvent usage. The book covers the current state of the field, featuring chapters from renowned contributors, covering four continents and ranging from still-active pioneers to new names emerging as creative strong contributors to this fascinating and promising area. Over a decade since the publication of Morales-Morales and Jensen's The Chemistry of Pincer Compounds (Elsevier 2007), research in this unique area has flourished, finding a plethora of applications in almost every single branch of chemistry—from their traditional application as very robust and active catalysts all the way to potential biological and pharmaceutical applications. - Describes the chemistry and applications of this important class of organometallic and coordination compounds - Includes contributions from global leaders in the field, featuring pioneers in the area as well as emerging experts conducting exciting research on pincer complexes - Highlights areas of promising and active research, including small molecule activation, earth abundant metals, and actinide chemistry
Prior to 1979, consideration of the problem of the carcinogenicity of the aromatic amine class of chemicals took place primarily in poster sessions and symposia of annual meetings of the American Association for Cancer Research and analogous international associations. In November 1979 the first meeting concerned with the aromatic amines was held in Rockville, Haryland under primary sponsorship of the National Cancer Institute. The proceedings from this meeting were published as Monograph 58 of the Journal of the National Cancel' Institute in 1981. The second meeting in this series, the Second International Conference on N-Substituted Aryl Compounds, was held in March/April of 1982 in Hot Springs, Arkansas. The National Cancer Institute and The National Center for Toxicological Research were the primary sponsors of this meeting. The proceedings were published as Volume 49 of the journal En-vil'onmental Health Perspectives in 1983. The third meeting in this series was held in April of 1987 at the Dearborn Hyatt in Dearborn, Michigan. The principal sponsor of this meeting was the Heyer L. Pre ntis Comprehensive Cancer Center of Metropolitan Detroit. The proceedings, Carcinogenic and Mutagenic Responses to Aromatic Amines and Nitroal'enes, were published in 1987 by Elsevier Press. The fourth meeting was held in Cleveland, Ohio, on July 15-19, 1989.
Essential reference for researchers and experts in industry highlighting the rapidly growing field of hydroxyapatite-based catalysts and their application in various chemical processes. Hydroxyapatite (Ca10(PO4)6(OH)2) is the main mineral component of human and animal bones. It is largely applied in the field of biomaterials due to its biocompatibility. Recently, hydroxyapatite-based materials have especially gained a lot of attention by researchers in catalysis, as they are versatile and have shown precious properties of a good catalyst and catalyst support such as excellent ion-exchange capacity, high porosity, very low water solubility, controlled basicity/acidity, and good thermal stability at high temperatures. Design and Applications of Hydroxyapatite-Based Catalysts gives a detailed overview of the synthesis, characterization, and use of hydroxyapatite-based materials in catalysis. It covers synthetic hydroxyapatites (from pure chemicals or waste), natural apatites and materials from eggshells and animal bones. The application of hydroxyapatite-based catalysts in selective oxidation, deoxygenation, selective hydrogenation, dehydrogenation reactions, organic synthesis, as well as reforming processes and production of energy carriers is reviewed. Moreover, electrocatalysis and photocatalysis using hydroxyapatite-based materials are discussed. Kinetic and mechanism studies of various chemical pro-cesses over hydroxyapatite-based catalysts are also presented. This is the first book solely dedicated to hydroxyapatite-based materials and their use in catalysis. Covers synthesis and characterization, surface and structure studies, kinetic and mechanism aspects, and various applications in heterogeneous catalysis, electrocatalysis, and photocatalysis. Aimed at further stimulating research in the field Design and Applications of Hydroxyapatite-Based Catalysts is an indispensable source-of-information for researchers in academia and industry working in catalysis.
There is a renaissance that is occurring in chemical and process engineering, and it is crucial for today's scientists, engineers, technicians, and operators to stay current. With so many changes over the last few decades in equipment and processes, petroleum refining is almost a living document, constantly needing updating. With no new refineries being built, companies are spending their capital re-tooling and adding on to existing plants. Refineries are like small cities, today, as they grow bigger and bigger and more and more complex. A huge percentage of a refinery can be changed, literally, from year to year, to account for the type of crude being refined or to integrate new equipment or processes. This book is the most up-to-date and comprehensive coverage of the most significant and recent changes to petroleum refining, presenting the state-of-the-art to the engineer, scientist, or student. Useful as a textbook, this is also an excellent, handy go-to reference for the veteran engineer, a volume no chemical or process engineering library should be without. Written by one of the world's foremost authorities, this book sets the standard for the industry and is an integral part of the petroleum refining renaissance. It is truly a must-have for any practicing engineer or student in this area.
The collection of contributions in this volume presents the most up-to-date findings in catalytic hydrogenation. The individual chapters have been written by 36 top specialists each of whom has achieved a remarkable depth of coverage when dealing with his particular topic. In addition to detailed treatment of the most recent problems connected with catalytic hydrogenations, the book also contains a number of previously unpublished results obtained either by the authors themselves or within the organizations to which they are affiliated.Because of its topical and original character, the book provides a wealth of information which will be invaluable not only to researchers and technicians dealing with hydrogenation, but also to all those concerned with homogeneous and heterogeneous catalysis, organic technology, petrochemistry and chemical engineering.
The future of the precious metals is shiny and resistant. Although expensive and potentially replaceable by transition metal catalysts, precious metal implementation in research and industry shows potential. These metals catalyze oxidation and hydrogenation due to their dissociative behavior toward hydrogen and oxygen, dehydrogenation, isomerization, and aromatization, etc. The precious metal catalysts, especially platinum-based catalysts, are involved in a variety of industrial processes. Examples include Pt–Rh gauze for nitric acid production, the Pt/Al2O3 catalyst for cyclohexane and propylene production, and Pd/Al2O3 catalysts for petrochemical hydropurification reactions, etc. A quick search of the number of published articles in the last five years containing a combination of corresponding “metals” (Pt, Pd, Ru, Rh and Au) and “catalysts” as keywords indicates the importance of the Pt catalysts, but also the continuous increase in the contribution of Pd and Au. This Special Issue reveals the importance of precious metals in catalysis and focuses on mono- and bi-metallic formulations of any supported precious metals and their promotional catalytic effect of other transition metals. The application of precious metals in diverse reactions, either homogeneous or heterogeneous, and studies of the preparation, characterization, and applications of the supported precious metal catalysts, are presented.
Although catalysts are responsible for the manufacture and processing of a number of products in daily use, the subject of catalysis is still very much in its infancy, and the complexity of the processes still present major challenges. Catalysis in Application presents a snapshot of the most up-to-date developments in the field of applied catalysis. Coverage is principally in the areas of hydrogenation, dehydrogenation, chiral catalysis, environmental catalysis and catalyst deactivation, combining a unique mix of chemistry and chemical engineering. With its wide-ranging coverage, this book will be a welcome addition to the shelves of every practitioner in catalysis, both in industry and academia.