Download Free Applications Of Game Theory In Deep Learning Book in PDF and EPUB Free Download. You can read online Applications Of Game Theory In Deep Learning and write the review.

GAME THEORY AND MACHINE LEARNING FOR CYBER SECURITY Move beyond the foundations of machine learning and game theory in cyber security to the latest research in this cutting-edge field In Game Theory and Machine Learning for Cyber Security, a team of expert security researchers delivers a collection of central research contributions from both machine learning and game theory applicable to cybersecurity. The distinguished editors have included resources that address open research questions in game theory and machine learning applied to cyber security systems and examine the strengths and limitations of current game theoretic models for cyber security. Readers will explore the vulnerabilities of traditional machine learning algorithms and how they can be mitigated in an adversarial machine learning approach. The book offers a comprehensive suite of solutions to a broad range of technical issues in applying game theory and machine learning to solve cyber security challenges. Beginning with an introduction to foundational concepts in game theory, machine learning, cyber security, and cyber deception, the editors provide readers with resources that discuss the latest in hypergames, behavioral game theory, adversarial machine learning, generative adversarial networks, and multi-agent reinforcement learning. Readers will also enjoy: A thorough introduction to game theory for cyber deception, including scalable algorithms for identifying stealthy attackers in a game theoretic framework, honeypot allocation over attack graphs, and behavioral games for cyber deception An exploration of game theory for cyber security, including actionable game-theoretic adversarial intervention detection against advanced persistent threats Practical discussions of adversarial machine learning for cyber security, including adversarial machine learning in 5G security and machine learning-driven fault injection in cyber-physical systems In-depth examinations of generative models for cyber security Perfect for researchers, students, and experts in the fields of computer science and engineering, Game Theory and Machine Learning for Cyber Security is also an indispensable resource for industry professionals, military personnel, researchers, faculty, and students with an interest in cyber security.
Global threats of terrorism, drug-smuggling and other crimes have led to a significant increase in research on game theory for security. Game theory provides a sound mathematical approach to deploy limited security resources to maximize their effectiveness. A typical approach is to randomize security schedules to avoid predictability, with the randomization using artificial intelligence techniques to take into account the importance of different targets and potential adversary reactions. This book distills the forefront of this research to provide the first and only study of long-term deployed applications of game theory for security for key organizations such as the Los Angeles International Airport police and the US Federal Air Marshals Service. The author and his research group draw from their extensive experience working with security officials to intelligently allocate limited security resources to protect targets, outlining the applications of these algorithms in research and the real world.
Algorithms have made our lives more efficient and entertaining--but not without a significant cost. Can we design a better future, one in which societial gains brought about by technology are balanced with the rights of citizens? The Ethical Algorithm offers a set of principled solutions based on the emerging and exciting science of socially aware algorithm design.
This unified 2001 treatment of game theory focuses on finding state-of-the-art solutions to issues surrounding the next generation of wireless and communications networks. The key results and tools of game theory are covered, as are various real-world technologies and a wide range of techniques for modeling, design and analysis.
Game theory is the mathematical study of interaction among independent, self-interested agents. The audience for game theory has grown dramatically in recent years, and now spans disciplines as diverse as political science, biology, psychology, economics, linguistics, sociology, and computer science, among others. What has been missing is a relatively short introduction to the field covering the common basis that anyone with a professional interest in game theory is likely to require. Such a text would minimize notation, ruthlessly focus on essentials, and yet not sacrifice rigor. This Synthesis Lecture aims to fill this gap by providing a concise and accessible introduction to the field. It covers the main classes of games, their representations, and the main concepts used to analyze them.
This book offers a self-sufficient treatment of a key tool, game theory and mechanism design, to model, analyze, and solve centralized as well as decentralized design problems involving multiple autonomous agents that interact strategically in a rational and intelligent way. The contents of the book provide a sound foundation of game theory and mechanism design theory which clearly represent the “science” behind traditional as well as emerging economic applications for the society.The importance of the discipline of game theory has been recognized through numerous Nobel prizes in economic sciences being awarded to game theorists, including the 2005, 2007, and 2012 prizes. The book distills the marvelous contributions of these and other celebrated game theorists and presents it in a way that can be easily understood even by senior undergraduate students.A unique feature of the book is its detailed coverage of mechanism design which is the art of designing a game among strategic agents so that a social goal is realized in an equilibrium of the induced game. Another feature is a large number of illustrative examples that are representative of both classical and modern applications of game theory and mechanism design. The book also includes informative biographical sketches of game theory legends, and is specially customized to a general engineering audience.After a thorough reading of this book, readers would be able to apply game theory and mechanism design in a principled and mature way to solve relevant problems in computer science (esp, artificial intelligence/machine learning), computer engineering, operations research, industrial engineering and microeconomics.
Moving Target Defense: Creating Asymmetric Uncertainty for Cyber Threats was developed by a group of leading researchers. It describes the fundamental challenges facing the research community and identifies new promising solution paths. Moving Target Defense which is motivated by the asymmetric costs borne by cyber defenders takes an advantage afforded to attackers and reverses it to advantage defenders. Moving Target Defense is enabled by technical trends in recent years, including virtualization and workload migration on commodity systems, widespread and redundant network connectivity, instruction set and address space layout randomization, just-in-time compilers, among other techniques. However, many challenging research problems remain to be solved, such as the security of virtualization infrastructures, secure and resilient techniques to move systems within a virtualized environment, automatic diversification techniques, automated ways to dynamically change and manage the configurations of systems and networks, quantification of security improvement, potential degradation and more. Moving Target Defense: Creating Asymmetric Uncertainty for Cyber Threats is designed for advanced -level students and researchers focused on computer science, and as a secondary text book or reference. Professionals working in this field will also find this book valuable.
Even since computers were invented, many researchers have been trying to understand how human beings learn and many interesting paradigms and approaches towards emulating human learning abilities have been proposed. The ability of learning is one of the central features of human intelligence, which makes it an important ingredient in both traditional Artificial Intelligence (AI) and emerging Cognitive Science. Machine Learning (ML) draws upon ideas from a diverse set of disciplines, including AI, Probability and Statistics, Computational Complexity, Information Theory, Psychology and Neurobiology, Control Theory and Philosophy. ML involves broad topics including Fuzzy Logic, Neural Networks (NNs), Evolutionary Algorithms (EAs), Probability and Statistics, Decision Trees, etc. Real-world applications of ML are widespread such as Pattern Recognition, Data Mining, Gaming, Bio-science, Telecommunications, Control and Robotics applications. This books reports the latest developments and futuristic trends in ML.