Download Free Applications Of Chalcogenides S Se And Te Book in PDF and EPUB Free Download. You can read online Applications Of Chalcogenides S Se And Te and write the review.

This book introduces readers to a wide range of applications for elements in Group 16 of the periodic table, such as, optical fibers for communication and sensing, X-ray imaging, electrochemical sensors, data storage devices, biomedical applications, photovoltaics and IR detectors, the rationale for these uses, the future scope of their applications, and expected improvements to existing technologies. Following an introductory section, the book is broadly divided into three parts—dealing with Sulfur, Selenium, and Tellurium. The sections cover the basic structure of the elements and their compounds in bulk and nanostructured forms; properties that make these useful for various applications, followed by applications and commercial products. As the global technology revolution necessitates the search for new materials and more efficient devices in the electronics and semiconductor industry, Applications of Chalcogenides: S, Se, and Te is an ideal book for a wide range of readers in industry, government and academic research facilities looking beyond silicon for materials used in the electronic and optoelectronic industry as well as biomedical applications.
Chalcogenide-Based Nanomaterials as Photocatalysts deals with the different types of chalcogenide-based photocatalytic reactions, covering the fundamental concepts of photocatalytic reactions involving chalcogenides for a range of energy and environmental applications. Sections focus on nanostructure control, synthesis methods, activity enhancement strategies, environmental applications, and perspectives of chalcogenide-based nanomaterials. The book offers guidelines for designing new chalcogenide-based nanoscale photocatalysts at low cost and high efficiency for efficient utilization of solar energy in the areas of energy production and environment remediation. - Provides information on the development of novel chalcogenide-based nanomaterials - Outlines the fundamentals of chalcogenides-based photocatalysis - Includes techniques for heterogeneous catalysis based on chalcogenide-based nanomaterials
This book reviews techniques used to characterize non-linear optical constants of chalcogenide glasses in bulk or thin films, and presents the properties of many chalcogenide systems. A range of applications of these glasses are surveyed, including ultra-fast switching, optical limiting, second harmonic generation and electro-optic effects. Also addressed are suitability of chalcogenide films in all-optical integrated circuits, fabrication of rib as well as ridge waveguides and of fiber gratings.
"Amorphous Chalcogenide Semiconductors and Glasses" describes developments in the science and technology of this class of materials. This book offers an up-to-date treatment of chalcogenide glasses and amorphous semiconductors from basic principles to applications while providing the reader with the necessary theoretical background to understanding the material properties technology of this class of materials. This book offers an up-to-date treatment of chalcogenide glasses and amorphous semiconductors from basic principles to applications while providing the reader with the necessary theoretical background to understanding the material properties. Chalcogenides form a special class of materials, which have one or more of the elements from the chalcogen group, Group VI in the Periodic Table (S, Se. or Te) as a constituent; the chalcogen is mixed with other elements to form various "new" compounds and alloys. Chalcogenides are noncrystalline solids because their structure is "amorphous" or "glassy". Such structures have totally different properties than crystalline solids. Chalcogenide glasses have a number of very interesting and useful properties, which have been already exploited in the commercialization of new devices.
This first ever reference book that focuses on metal chalcogenide semiconductor nanostructures for renewable energy applications encapsulates the state-of-the-art in multidisciplinary research on the metal chalcogenide semiconductor nanostructures (nanocrystals, nanoparticles, nanorods, nanowires, nanobelts, nanoflowers, nanoribbons and more). The properties and synthesis of a class of nanomaterials is essential to renewable energy manufacturing and this book focuses on the synthesis of metal chalcogendie nanostructures, their growth mechanism, optical, electrical, and other important properties and their applications in different diverging fields like photovoltaics, hydrogen production, theromelectrics, lithium battery, energy storage, photocatalysis, sensors. An important reference source for students, scientists, engineers, researchers and industrialists working on nanomaterials-based energy aspects associated with chemistry, physics, materials science, electrical engineering, energy science and technology, and environmental science.
This is introductory book for researchers, scientists and students in the area of organic and inorganic composite materials. This book has addressed timely the innovative topic "chalcogenide-multiwalled carbon nanotubes and chalcogenide-bilayer graphene" composite materials under a glassy regime. This book will give a clear idea on the concepts of the newly established composite materials area, by providing interpretations of inside physio-chemical mechanism. The remarkable landmark innovations related to this newly introduced research field are included in this book. Additionally, the possible futuristic applications in the area of nanoelectronics, optoelectronics, biomedical etc are also addressed.
Chalcogenide: From 3D to 2D and Beyond reviews graphene-like 2D chalcogenide systems that include topological insulators, interesting thermoelectric structures, and structures that exhibit a host of spin phenomena that are unique to 2D and lower-dimensional geometries. The book describes state-of-the-art materials in growth and fabrication, magnetic, electronic and optical characterization, as well as the experimental and theoretical aspects of this family of materials. Bulk chalcogenides, chalcogenide films, their heterostructures and low-dimensional chalcogenide-based quantum structures are discussed. Particular attention is paid to findings that are relevant to the continued search for new physical phenomena and new functionalities. Finally, the book covers the enormous opportunities that have emerged as it has become possible to achieve lower-dimensional chalcogenide structures by epitaxial techniques. - Provides readers with foundational information on the materials growth, fabrication, magnetic, electronic and optical characterization of chalcogenide materials - Discusses not only bulk chalcogenides and chalcogenide thin films, but also two-dimensional chalcogenide materials systems - Reviews the most important applications in optoelectronics, photovoltaics and thermoelectrics
Investigate the chalcogenides with this comprehensive consideration of their structural and chemical characteristics. This book provides a deep dive for researchers, material scientists, and inquisitive minds. • Explore the bonding patterns and atomic arrangements that define chalcogenides. • Unravel the unique crystal structures of various chalcogenide families, from layered wonders to complex networks. • Gain a thorough understanding of the factors governing chalcogenide formation and composition. • Have an impact on structural and chemical features by the electrical, optical, and other properties of chalcogenides. • Implement the vast applications of chalcogenides in fields ranging from photonics and electronics to energy storage and catalysis. • Learn the structural and chemical features of chalcogenides to provide a rich understanding of these versatile materials, positioning you to unlock their potential for groundbreaking advancements.
Nanofillers for Binary Polymer Blends covers major advances in the field of polymer-blend nanocomposites. The book encompasses the fundamentals of polymer blends, various nanofillers, experimental techniques used in their fabrication, the characterization of various polymer blend nanocomposites, and theoretical evaluations of various properties. The properties and potential applications that have been achieved in various polymer blends by the addition of nanofillers are also highlighted. Applications for commercial products, including automotive parts, packaging, construction materials, biotechnology, medical devices, building materials, computer housings, car interiors, etc., are also covered in detail.This is an important reference source for materials scientists and engineers looking to increase their understanding of how nanofillers are being used in polymer blends. - Outlines the various types of nanofillers, explaining how the properties of each enhances the morphology, rheology, mechanical, dynamic mechanical, viscoelastic, electrical and thermal properties of polymer blends - Provides information on the theory, modeling and simulation of nano-filled polymer blends - Assesses the mechanism of selective localization of nanofillers in polymer blends, the effect of localization of nanofillers on the microstructure, and the relative performance of polymer blends
Chalcogenides are chemical compounds that contain one or more sulfides, selenides, and tellurides (S, Se, Te) paired with an electropositive counterpart. They are developed through a strong covalent bond creating a variety of morphological structures, frequently organized by hexagonal or monoclinic geometry. The derivatives of chalcogenide materials such as binary, ternary, and quaternary are pertinent in various applications, including sensors, batteries, opto-electronics, photovoltaics, fuel cells, and photocatalysts. Chalcogenide-based materials can be developed through a variety of physical and chemical methodologies. This book provides a general overview of these methodologies and discusses the various chalcogen materials and their different applications. It includes eight chapters in three sections: "Chalcogen Fabrication", "Solar Cells and Batteries" and "Nanoscale Devices".