Download Free Applications Of Big Data In Large And Small Scale Systems Book in PDF and EPUB Free Download. You can read online Applications Of Big Data In Large And Small Scale Systems and write the review.

With new technologies, such as computer vision, internet of things, mobile computing, e-governance and e-commerce, and wide applications of social media, organizations generate a huge volume of data and at a much faster rate than several years ago. Big data in large-/small-scale systems, characterized by high volume, diversity, and velocity, increasingly drives decision making and is changing the landscape of business intelligence. From governments to private organizations, from communities to individuals, all areas are being affected by this shift. There is a high demand for big data analytics that offer insights for computing efficiency, knowledge discovery, problem solving, and event prediction. To handle this demand and this increase in big data, there needs to be research on innovative and optimized machine learning algorithms in both large- and small-scale systems. Applications of Big Data in Large- and Small-Scale Systems includes state-of-the-art research findings on the latest development, up-to-date issues, and challenges in the field of big data and presents the latest innovative and intelligent applications related to big data. This book encompasses big data in various multidisciplinary fields from the medical field to agriculture, business research, and smart cities. While highlighting topics including machine learning, cloud computing, data visualization, and more, this book is a valuable reference tool for computer scientists, data scientists and analysts, engineers, practitioners, stakeholders, researchers, academicians, and students interested in the versatile and innovative use of big data in both large-scale and small-scale systems.
Summary Big Data teaches you to build big data systems using an architecture that takes advantage of clustered hardware along with new tools designed specifically to capture and analyze web-scale data. It describes a scalable, easy-to-understand approach to big data systems that can be built and run by a small team. Following a realistic example, this book guides readers through the theory of big data systems, how to implement them in practice, and how to deploy and operate them once they're built. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Book Web-scale applications like social networks, real-time analytics, or e-commerce sites deal with a lot of data, whose volume and velocity exceed the limits of traditional database systems. These applications require architectures built around clusters of machines to store and process data of any size, or speed. Fortunately, scale and simplicity are not mutually exclusive. Big Data teaches you to build big data systems using an architecture designed specifically to capture and analyze web-scale data. This book presents the Lambda Architecture, a scalable, easy-to-understand approach that can be built and run by a small team. You'll explore the theory of big data systems and how to implement them in practice. In addition to discovering a general framework for processing big data, you'll learn specific technologies like Hadoop, Storm, and NoSQL databases. This book requires no previous exposure to large-scale data analysis or NoSQL tools. Familiarity with traditional databases is helpful. What's Inside Introduction to big data systems Real-time processing of web-scale data Tools like Hadoop, Cassandra, and Storm Extensions to traditional database skills About the Authors Nathan Marz is the creator of Apache Storm and the originator of the Lambda Architecture for big data systems. James Warren is an analytics architect with a background in machine learning and scientific computing. Table of Contents A new paradigm for Big Data PART 1 BATCH LAYER Data model for Big Data Data model for Big Data: Illustration Data storage on the batch layer Data storage on the batch layer: Illustration Batch layer Batch layer: Illustration An example batch layer: Architecture and algorithms An example batch layer: Implementation PART 2 SERVING LAYER Serving layer Serving layer: Illustration PART 3 SPEED LAYER Realtime views Realtime views: Illustration Queuing and stream processing Queuing and stream processing: Illustration Micro-batch stream processing Micro-batch stream processing: Illustration Lambda Architecture in depth
In this book readers will find technological discussions on the existing and emerging technologies across the different stages of the big data value chain. They will learn about legal aspects of big data, the social impact, and about education needs and requirements. And they will discover the business perspective and how big data technology can be exploited to deliver value within different sectors of the economy. The book is structured in four parts: Part I “The Big Data Opportunity” explores the value potential of big data with a particular focus on the European context. It also describes the legal, business and social dimensions that need to be addressed, and briefly introduces the European Commission’s BIG project. Part II “The Big Data Value Chain” details the complete big data lifecycle from a technical point of view, ranging from data acquisition, analysis, curation and storage, to data usage and exploitation. Next, Part III “Usage and Exploitation of Big Data” illustrates the value creation possibilities of big data applications in various sectors, including industry, healthcare, finance, energy, media and public services. Finally, Part IV “A Roadmap for Big Data Research” identifies and prioritizes the cross-sectorial requirements for big data research, and outlines the most urgent and challenging technological, economic, political and societal issues for big data in Europe. This compendium summarizes more than two years of work performed by a leading group of major European research centers and industries in the context of the BIG project. It brings together research findings, forecasts and estimates related to this challenging technological context that is becoming the major axis of the new digitally transformed business environment.
This book constitutes the thoroughly refereed revised selected papers of the First Workshop on Big Data Benchmarks, WBDB 2012, held in San Jose, CA, USA, in May 2012 and the Second Workshop on Big Data Benchmarks, WBDB 2012, held in Pune, India, in December 2012. The 14 revised papers presented were carefully reviewed and selected from 60 submissions. The papers are organized in topical sections on benchmarking, foundations and tools; domain specific benchmarking; benchmarking hardware and end-to-end big data benchmarks.
In recent decades, the industrial revolution has increased economic growth despite its immersion in global environmental issues such as climate change. Researchers emphasize the adoption of circular economy practices in global supply chains and businesses for better socio-environmental sustainability without compromising economic growth. Integrating blockchain technology into business practices could promote the circular economy as well as global environmental sustainability. Integrating Blockchain Technology Into the Circular Economy discusses the technological advancements in circular economy practices, which provide better results for both economic growth and environmental sustainability. It provides relevant theoretical frameworks and the latest empirical research findings in the applications of blockchain technology. Covering topics such as big data analytics, financial market infrastructure, and sustainable performance, this book is an essential resource for managers, operations managers, executives, manufacturers, environmentalists, researchers, industry practitioners, students and educators of higher education, and academicians.
The rise of technology in human culture has changed almost every facet of society. Technology is especially useful regarding sustainable development. These technologies can cause significant greenhouse gas reductions and other benefits in terms of logistics and smart cities. New technology applied in this way can greatly help the human effort to restore the environment. Disruptive Technologies and Eco-Innovation for Sustainable Development provides an in-depth look into the new techniques, strategies, and technologies for achieving environmental sustainability through best business and technology practices. The book covers topics such as eco-innovation, green criteria, Agriculture 4.0, and topics related to logic, philosophy, and history of science and technology from the green/sustainable point of view. It is essential for managers, academicians, scientists, students, and researchers in various government, public, and private sectors.
The convergence of Artif icial Intelligence (AI) and Internet of Things (IoT) is reshaping the way industries, businesses, and economies function; the 34 chapters in this collection show how the full potential of these technologies is being enabled to create intelligent machines that simulate smart behavior and support decision-making with little or no human interference, thereby providing startling organizational efficiencies. Readers will discover that in Reshaping Intelligent Business and Industry: The book unpacks the two superpowers of innovation, AI and IoT, and explains how they connect to better communicate and exchange information about online activities; How the center and the network’s edge generate predictive analytics or anomaly alerts; The meaning of AI at the edge and IoT networks. How bandwidth is reduced and privacy and security are enhanced; How AI applications increase operating efficiency, spawn new products and services, and enhance risk management; How AI and IoT create ‘intelligent’ devices and how new AI technology enables IoT to reach its full potential; Analyzes AIOT platforms and the handling of personal information for shared frameworks that remain sensitive to customers’ privacy while effectively utilizing data. Audience This book will appeal to all business and organization leaders, entrepreneurs, policymakers, and economists, as well as scientists, engineers, and students working in artificial intelligence, software engineering, and information technology.
Artificial intelligence (AI) has emerged as a transformative force across various domains, revolutionizing the way we perceive and address challenges in healthcare. The convergence of AI and healthcare holds immense promise, offering unprecedented opportunities to enhance medical diagnosis, treatment, and patient care. In today’s world, the intersection of AI and healthcare stands as one of the most promising frontiers for innovation and progress. Artificial Intelligence Transformations for Healthcare Applications: Medical Diagnosis, Treatment, and Patient Care embodies this convergence, offering a comprehensive exploration of how AI is revolutionizing various aspects of healthcare delivery. At its core, this book addresses the urgent need for more effective and efficient healthcare solutions in an increasingly complex and data-rich environment. Covering topics such as chronic disease, image classification, and precision medicine, this book is an essential resource for healthcare professionals, medical researchers, AI and machine learning specialists, healthcare administrators and executives, medical educators and students, biomedical engineers, healthcare IT professionals, policy makers and regulators, academicians, and more.