Download Free Applications Of Atomic Magnetometry In Magnetic Resonance Imaging And Magnetic Molecular Sensing Book in PDF and EPUB Free Download. You can read online Applications Of Atomic Magnetometry In Magnetic Resonance Imaging And Magnetic Molecular Sensing and write the review.

Atomic magnetometry was presented as a technique suitable in magnetic resonance imaging (MRI) and magnetic molecular sensing. The magnetometer was based on nonlinear magneto-optical rotation promoted by Cs atoms in a vapor cell with antirelaxation coating. A sensitivity of 150 fT/Hz^{1/2} for dc magnetic elds was achieved. Applications of atomic magnetometry in MRI were demonstrated using the remote detection scheme. Using a gadolinium chelate as the pH contrast agent, we demonstrated the response as 0.6 s-1mM-1 per pH unit at the ambient magnetic eld for the pH range 6-8.5. A stopped ow scheme was used to directly measure spin-lattice relaxation time T1 to determine the relaxivity values. The unknown pH value of a solution was measured using only 50 micro M of this contrast agent. For magnetic molecular sensing, three key parameters were considered, namely sensitivity, spatial resolution and molecular speci city. To enhance the sensitivity of the magnetometer, the sample region was separated from the detection region. This arrangement lessened noise due to air turbulence and altered the design of the magnetic shields that would allow a gradiometer con guration. With an improved sensitivity of 80 fT/Hz^{1/2}, we demonstrated that 7000 streptavidin-coated magnetic microparticles could produce 650 pT predicting single particle detection during one second measuring time. Spatial information was obtained using a scanning magnetic imaging scheme. The spatial resolution was 20 m with a detection distance of more than 1 cm. Using force-induced remnant magnetization spectroscopy, the molecular speci city was achieved. Magnetically labeled human CD4+ T cells were used as an example. Quantitative correlation was shown, which could be used in human immunode ciency virus diagnosis. Future works were discussed.
We report the design and optimization of atomic magnetometer with a sensitivity of 80 fT/(Hz)1/2 for dc magnetic fields. Quantitative measurements using optically detected magnetic resonance imaging (MRI) for flow inside porous metals will be demonstrated. Flow profiles and images were obtained for a series of porous metals with different average pore sizes. The signal amplitudes and spatial distributions were compared. A clogged region in one of the samples was revealed using optically detected MRI but not optical imaging or scanning electron microscopy. These applications will significantly broaden the impact of optically detected MRI in chemical imaging and materials research. However, MRI in an ultralow magnetic field usually has poor spatial resolution compared to its high-field counterpart. The concomitant field effect and low signal level are among the major causes that limit the spatial resolution. A novel imaging method, a zoom-in scheme, will be demonstrated to achieve a reasonably high spatial resolution of 0.6 mm × 0.6 mm without suffering the concomitant field effect. This method involves multiple steps of spatial encoding with gradually increased spatial resolution but reduced field-of-view. This method takes advantage of the mobility of ultralow-field MRI and the large physical size of the ambient magnetic field. We also demonstrate the use of a unique gradient solenoid to improve the efficiency of optical detection with an atomic magnetometer. The enhanced filling factor improved the signal level and consequently facilitated an improved spatial resolution.
The book is devoted to the description of the fundamentals in the area of magnetic resonance. The book covers two domains: radiospectroscopy and quantum radioelectronics. Radiospectroscopy comprises nuclear magnetic resonance , electron paramagnetic resonance, nuclear quadrupolar resonance, and some other phenomena. The radiospectroscopic methods are widely used for obtaining the information on internal (nano, micro and macro) structure of objects. Quantum radioelectronics, which was developed on the basis of radiospectroscopic methods, deals with processes in quantum amplifiers, generators and magnetometers. We do not know analogues of the book presented. The book implies a few levels of the general consideration of phenomena, that can be useful for different groups of readers (students, PhD students, scientists from other scientific branches: physics, chemistry, physical chemistry, biochemistry, biology and medicine).
Optically detected atomic magnetometers use the coherent precession of polarized atomic spins to detect and measure magnetic fields. Low-field MRI using atomic magnetometers with improvements in the spatial resolution and sensitivity can be made more competitive with conventional MRI systems. In the present thesis we report the improvement of spatial resolution of low-field MRI, contrast imaging generated by ligand-conjugated magnetic particles and improvements in selective polarization technique. Magnetic resonance imaging (MRI) in an ultra-low magnetic field usually has poor spatial resolution compared to its high-field counterpart. The concomitant field effect and low signal level are among the major causes that limit the spatial resolution. Here, we report a novel imaging method, a zoom-in scheme, to achieve a reasonably high spatial resolution of 0.6 mm × 0.6 mm without suffering the concomitant field effect. This method involves multiple steps of spatial encoding with gradually increased spatial resolution but reduced field-of-view. We also demonstrate the use of a unique gradient solenoid to improve the efficiency of optical detection with an atomic magnetometer. The enhanced filling factor improved the signal level and consequently facilitated an improved spatial resolution. Ultra-low-field magnetic resonance imaging usually cannot provide chemical information, because of the loss of chemical shift information. By using ligand-conjugated magnetic particles, we show contrast imaging corresponding to the particles binding their specific molecular target. A 10% signal decrease was observed when the streptavidin-biotin bonds were formed between the magnetic particles and the surface. Our method provides a unique approach for probing molecules on surfaces, especially under opaque conditions where optical-based imaging techniques are not applicable. The last part of our study is selective polarization, which is unique advantage of low-field MRI. By selectively pre-polarizing the sample in a specific channel provides significant information for studying flow and mixing behaviour in chemical reactions. For the first time we conducted the selective polarization experiment on two different liquids. By selectively polarizing water, we report a 5% difference in the signal intensity at different flow rates. The improvements mentioned in this thesis can contribute for further developments of low-field MRI.
Featuring chapters written by leading experts in magnetometry, this book provides comprehensive coverage of the principles, technology and diverse applications of optical magnetometry, from testing fundamental laws of nature to detecting biomagnetic fields and medical diagnostics. Readers will find a wealth of technical information, from antirelaxation-coating techniques, microfabrication and magnetic shielding to geomagnetic-field measurements, space magnetometry, detection of biomagnetic fields, detection of NMR and MRI signals and rotation sensing. The book includes an original survey of the history of optical magnetometry and a chapter on the commercial use of these technologies. The book is supported by extensive online material, containing historical overviews, derivations, sideline discussion, additional plots and tables, available at www.cambridge.org/9781107010352. As well as introducing graduate students to this field, the book is also a useful reference for researchers in atomic physics.
Comprehensive coverage of the principles, technology and diverse applications of optical magnetometry for graduate students and researchers in atomic physics.
A comprehensive collection of the applications of Nuclear Magnetic Resonance (NMR), Magnetic Resonance Imaging (MRI) and Electron-Spin Resonance (ESR). Covers the wide ranging disciplines in which these techniques are used: * Chemistry; * Biological Sciences; * Pharmaceutical Sciences; * Medical uses; * Marine Science; * Materials Science; * Food Science. Illustrates many techniques through the applications described, e.g.: * High resolution solid and liquid state NMR; * Low resolution NMR, especially important in food science; * Solution State NMR, especially important in pharmaceutical sciences; * Magnetic Resonance Imaging, especially important for medical uses; * Electron Spin Resonance, especially important for spin-labelling in food, marine and medical studies.
Conventional nuclear magnetic resonance techniques have been exploited by scientists for everything from protein structure determination and clinical imaging, to drug synthesis and design. However, there are still several limitations, including portability, expense, and sensitivity. New methods will be described for sensitivity enhancement using xenon hyperpolarization and inexpensive low-field detection of nuclear quadrupole resonance (NQR), J-coupling, and hyperpolarized xenon (hp-Xe). Low-field detection is performed with an alkali vapor atomic magnetometer which is known to be extremely sensitive at earth's magnetic field and lower. This low field sensitivity allows for detection of nucleus interactions that are normally overshadowed by the much stronger Zeeman interactions at low field, such as NQR and J-coupling interactions. Lower magnetic field detection of conventional (Zeeman) NMR interactions are problematic due to the inherent loss of polarization at low fields. Hyperpolarization techniques, such as hp-Xe, allow NMR signal to be independent of the leading field strength. Hp-Xe is explored at high fields for microfluidic rapid screening applications, and at low field to expand the applications of these techniques.
Application of Nuclear Magnetic Resonance Spectroscopy in Organic Chemistry, Second Edition covers the theoretical background necessary for the intelligent application of NMR spectroscopy to common problems encountered in organic chemistry. This book is composed of five parts, and begins with introduction to the theory and practice of nuclear magnetic resonance. The succeeding chapter deals with the theory of chemical effects in NMR spectroscopy. These topics are followed by a discussion on the application of chemical shift to organic compound analysis and the principles of the spin-spin coupling .The final chapter considers the applications of time- dependent phenomena in NMR spectroscopy. This book will prove useful to analytical chemists and researchers in the allied fields.