Download Free Application Specific Integrated Circuit Asic Technology Book in PDF and EPUB Free Download. You can read online Application Specific Integrated Circuit Asic Technology and write the review.

This comprehensive book on application-specific integrated circuits (ASICs) describes the latest methods in VLSI-systems design. ASIC design, using commercial tools and pre-designed cell libraries, is the fastest, most cost-effective, and least error-prone method of IC design. As a consequence, ASICs and ASIC-design methods have become increasingly popular in industry for a wide range of applications. The book covers both semicustom and programmable ASIC types. After describing the fundamentals of digital logic design and the physical features of each ASIC type, the book turns to ASIC logic design - design entry, logic synthesis, simulation, and test - and then to physical design - partitioning, floorplanning, placement, and routing. You will find here, in practical well-explained detail, everything you need to know to understand the design of an ASIC, and everything you must do to begin and to complete your own design. Features Broad coverage includes, in one information-packed volume, cell-based ICs, gate arrays, field-programmable gate arrays (FPGAs), and complex programmable logic devices (PLDs). Examples throughout the book have been checked with a wide range of commercial tools to ensure their accuracy and utility. Separate chapters and appendixes on both Verilog and VHDL, including material from IEEE standards, serve as a complete reference for high-level, ASIC-design entry. As in other landmark VLSI books published by Addison-Wesley - from Mead and Conway to Weste and Eshraghian - the author's teaching expertise and industry experience illuminate the presentation of useful design methods. Any engineer, manager, or student who is working with ASICs in a design project, or who is simply interested in knowing more about the different ASIC types and design styles, will find this book to be an invaluable resource, reference, and guide.
Application Specific Integrated Circuit (ASIC) Technology explores and discusses the different aspects of the ASIC technology experienced during the 1990s. The topics of the chapters range from the ASIC business, model, marketing, and development up to its testability, packaging, and quality and reliability. An introductory chapter begins the discussion and tackles the historical perspective and the classification of the ASIC technology. Chapters 2 and 3 cover the business side of the technology as it discusses the market dynamics and marketing strategies. The following chapters focus on the product itself and deal with the design and model and library development. Computer-aided design tools and systems are included in the discussion. Manufacturing and packaging of ASICs are also given attention in the book. Finally, the last three chapters present the application, testability, and reliability of ASIC technology. The text can be of most help to students in the fields of microelectronics, computer technology, and engineering.
This book describes RTL design using Verilog, synthesis and timing closure for System On Chip (SOC) design blocks. It covers the complex RTL design scenarios and challenges for SOC designs and provides practical information on performance improvements in SOC, as well as Application Specific Integrated Circuit (ASIC) designs. Prototyping using modern high density Field Programmable Gate Arrays (FPGAs) is discussed in this book with the practical examples and case studies. The book discusses SOC design, performance improvement techniques, testing and system level verification, while also describing the modern Intel FPGA/XILINX FPGA architectures and their use in SOC prototyping. Further, the book covers the Synopsys Design Compiler (DC) and Prime Time (PT) commands, and how they can be used to optimize complex ASIC/SOC designs. The contents of this book will be useful to students and professionals alike.
The tools and techniques you need to break the analog design bottleneck! Ten years ago, analog seemed to be a dead-end technology. Today, System-on-Chip (SoC) designs are increasingly mixed-signal designs. With the advent of application-specific integrated circuits (ASIC) technologies that can integrate both analog and digital functions on a single chip, analog has become more crucial than ever to the design process. Today, designers are moving beyond hand-crafted, one-transistor-at-a-time methods. They are using new circuit and physical synthesis tools to design practical analog circuits; new modeling and analysis tools to allow rapid exploration of system level alternatives; and new simulation tools to provide accurate answers for analog circuit behaviors and interactions that were considered impossible to handle only a few years ago. To give circuit designers and CAD professionals a better understanding of the history and the current state of the art in the field, this volume collects in one place the essential set of analog CAD papers that form the foundation of today's new analog design automation tools. Areas covered are: * Analog synthesis * Symbolic analysis * Analog layout * Analog modeling and analysis * Specialized analog simulation * Circuit centering and yield optimization * Circuit testing Computer-Aided Design of Analog Integrated Circuits and Systems is the cutting-edge reference that will be an invaluable resource for every semiconductor circuit designer and CAD professional who hopes to break the analog design bottleneck.
The field of application-specific integrated circuits (ASICs) is fast-paced being at the very forefront of modern nanoscale fabrication and presents a deeply engaging career path. ASICs can provide us with high-speed computation in the case of digital circuits. For example, central processing units, graphics processing units, field-programmable gate arrays, and custom-made digital signal processors are examples of ASICs and the transistors they are fabricated from. We can use that same technology complementary metal-oxide semiconductor processes to implement high-precision sensing of or interfacing to the world through analog-to-digital converters, digital-to-analog converters, custom image sensors, and highly integrated micron-scale sensors such as magnetometers, accelerometers, and microelectromechanical machines. ASIC technologies now transitioning toward magneto-resistive and phase-changing materials also offer digital memory capacities that have aided our technological progress. Combining these domains, we have moved toward big data analytics and the new era of artificial intelligence and machine learning. This book provides a small selection of chapters covering aspects of ASIC development and the surrounding business model.
This volume provides an extensive overview of radiation effects on integrated circuits, offering major guidelines for coping with radiation effects on components. It contains a set of chapters based on the tutorials presented at the International School on Effects of Radiation on Embedded Systems for Space Applications (SERESSA) that was held in Manaus, Brazil, November 20-25, 2005.
Arranged in a format that follows the industry-common ASIC physical design flow, Physical Design Essentials begins with general concepts of an ASIC library, then examines floorplanning, placement, routing, verification, and finally, testing. Among the topics covered are Basic standard cell design, transistor-sizing, and layout styles; Linear, non-linear, and polynomial characterization; Physical design constraints and floorplanning styles; Algorithms used for placement; Clock Tree Synthesis; Parasitic extraction; Electronic Testing, and many more.
Control engineering seeks to understand physical systems, using mathematical modeling, in terms of inputs, outputs and various components with different behaviors. It has an essential role in a wide range of control systems, from household appliances to space flight. This book provides an in-depth view of the technologies that are implemented in most varieties of modern industrial control engineering. A solid grounding is provided in traditional control techniques, followed by detailed examination of modern control techniques such as real-time, distributed, robotic, embedded, computer and wireless control technologies. For each technology, the book discusses its full profile, from the field layer and the control layer to the operator layer. It also includes all the interfaces in industrial control systems: between controllers and systems; between different layers; and between operators and systems. It not only describes the details of both real-time operating systems and distributed operating systems, but also provides coverage of the microprocessor boot code, which other books lack. In addition to working principles and operation mechanisms, this book emphasizes the practical issues of components, devices and hardware circuits, giving the specification parameters, install procedures, calibration and configuration methodologies needed for engineers to put the theory into practice. - Documents all the key technologies of a wide range of industrial control systems - Emphasizes practical application and methods alongside theory and principles - An ideal reference for practicing engineers needing to further their understanding of the latest industrial control concepts and techniques
*Introduces cutting-edge control systems to a wide readership of engineers and students *The first book on neuro-fuzzy control systems to take a practical, applications-based approach, backed up with worked examples and case studies *Learn to use VHDL in real-world applications Introducing cutting edge control systems through real-world applications Neural networks and fuzzy logic based systems offer a modern control solution to AC machines used in variable speed drives, enabling industry to save costs and increase efficiency by replacing expensive and high-maintenance DC motor systems. The use of fast micros has revolutionised the field with sensorless vector control and direct torque control. This book reflects recent research findings and acts as a useful guide to the new generation of control systems for a wide readership of advanced undergraduate and graduate students, as well as practising engineers. The authors guide readers quickly and concisely through the complex topics of neural networks, fuzzy logic, mathematical modelling of electrical machines, power systems control and VHDL design. Unlike the academic monographs that have previously been published on each of these subjects, this book combines them and is based round case studies of systems analysis, control strategies, design, simulation and implementation. The result is a guide to applied control systems design that will appeal equally to students and professional design engineers. The book can also be used as a unique VHDL design aid, based on real-world power engineering applications.
The last twenty years have seen major advances in the electronics industry. Perhaps the most significant aspect of these advances has been the significant role that electronic equipment plays in almost all product markets. Even though electronic equipment is used in a broad base of applications, many future applications have yet to be conceived. This versatility of electron ics has been brought about primarily by the significant advances that have been made in integrated circuit technology. The electronic product user is rarely aware of the integrated circuits within the equipment. However, the user is often very aware of the size, weight, mod ularity, maintainability, aesthetics, and human interface features of the product. In fact, these are aspects of the products that often are instrumental in deter mining its success or failure in the marketplace. Optimizing these and other product features is the primary role of Electronic Equipment Packaging Technology. As the electronics industry continues to pro vide products that operate faster than their predecessors in a smaller space with a reduced cost per function, the role of electronic packaging technology will assume an even greater role in the development of cost-effective products.