Download Free Application Of The Space Time Conservation Element And Solution Element Method To One Dimensional Advection Diffusion Problems Book in PDF and EPUB Free Download. You can read online Application Of The Space Time Conservation Element And Solution Element Method To One Dimensional Advection Diffusion Problems and write the review.

Test problems are used to examine the performance of several one-dimensional numerical schemes based on the space-time conservation and solution element (CE/SE) method. Investigated in this paper are the CE/SE schemes constructed previously for solving the linear unsteady advection-diffusion equation and the schemes derived here for solving the nonlinear viscous and inviscid Burgers equations. In comparison with the numerical solutions obtained using several traditional finite-difference schemes with similar accuracy, the CE/SE solutions display much lower numerical dissipation and dispersion errors. Wang, Xiao-Yen and Chow, Chuen-Yen and Chang, Sin-Chung Glenn Research Center NASA/TM-1999-209068, NAS 1.15:209068, E-11624
High-order numerical methods for hyperbolic conservation laws do not guarantee the validity of constraints that physically meaningful approximations are supposed to satisfy. The finite volume and finite element schemes summarized in this book use limiting techniques to enforce discrete maximum principles and entropy inequalities. Spurious oscillations are prevented using artificial viscosity operators and/or essentially nonoscillatory reconstructions.An introduction to classical nonlinear stabilization approaches is given in the simple context of one-dimensional finite volume discretizations. Subsequent chapters of Part I are focused on recent extensions to continuous and discontinuous Galerkin methods. Many of the algorithms presented in these chapters were developed by the authors and their collaborators. Part II gives a deeper insight into the mathematical theory of property-preserving numerical schemes. It begins with a review of the convergence theory for finite volume methods and ends with analysis of algebraic flux correction schemes for finite elements. In addition to providing ready-to-use algorithms, this text explains the design principles behind such algorithms and shows how to put theory into practice. Although the book is based on lecture notes written for an advanced graduate-level course, it is also aimed at senior researchers who develop and analyze numerical methods for hyperbolic problems.
Complex multiscale systems such as combined free or porous flow regimes and transport processes governed by combined diffusion, convection and reaction mechanisms, which cannot be readily modeled using traditional methods, can be solved by multiscale or stabilized finite element schemes.Due to the importance of the described multiscale processes in applications such as separation processes, reaction engineering and environmental systems analysis, a sound knowledge of such methods is essential for many researchers and design engineers who wish to develop reliable solutions for industrially relevant problems. The main scope of this book is to provide an authoritative description of recent developments in the field of finite element analysis, with a particular emphasis on the multiscale finite element modeling of transport phenomena and flow problem./a
This book focuses on process simulation in chemical engineering with a numerical algorithm based on the moving finite element method (MFEM). It offers new tools and approaches for modeling and simulating time-dependent problems with moving fronts and with moving boundaries described by time-dependent convection-reaction-diffusion partial differential equations in one or two-dimensional space domains. It provides a comprehensive account of the development of the moving finite element method, describing and analyzing the theoretical and practical aspects of the MFEM for models in 1D, 1D+1d, and 2D space domains. Mathematical models are universal, and the book reviews successful applications of MFEM to solve engineering problems. It covers a broad range of application algorithm to engineering problems, namely on separation and reaction processes presenting and discussing relevant numerical applications of the moving finite element method derived from real-world process simulations.