Download Free Application Of Greens Functions In Science And Engineering Book in PDF and EPUB Free Download. You can read online Application Of Greens Functions In Science And Engineering and write the review.

In addition to coverage of Green's function, this concise introductory treatment examines boundary value problems, generalized functions, eigenfunction expansions, partial differential equations, and acoustics. Suitable for undergraduate and graduate students. 1971 edition.
Green's Functions and Linear Differential Equations: Theory, Applications, and Computation presents a variety of methods to solve linear ordinary differential equations (ODEs) and partial differential equations (PDEs). The text provides a sufficient theoretical basis to understand Green's function method, which is used to solve initial and boundary
Since publication of the first edition over a decade ago, Green’s Functions with Applications has provided applied scientists and engineers with a systematic approach to the various methods available for deriving a Green’s function. This fully revised Second Edition retains the same purpose, but has been meticulously updated to reflect the current state of the art. The book opens with necessary background information: a new chapter on the historical development of the Green’s function, coverage of the Fourier and Laplace transforms, a discussion of the classical special functions of Bessel functions and Legendre polynomials, and a review of the Dirac delta function. The text then presents Green’s functions for each class of differential equation (ordinary differential, wave, heat, and Helmholtz equations) according to the number of spatial dimensions and the geometry of the domain. Detailing step-by-step methods for finding and computing Green’s functions, each chapter contains a special section devoted to topics where Green’s functions particularly are useful. For example, in the case of the wave equation, Green’s functions are beneficial in describing diffraction and waves. To aid readers in developing practical skills for finding Green’s functions, worked examples, problem sets, and illustrations from acoustics, applied mechanics, antennas, and the stability of fluids and plasmas are featured throughout the text. A new chapter on numerical methods closes the book. Included solutions and hundreds of references to the literature on the construction and use of Green's functions make Green’s Functions with Applications, Second Edition a valuable sourcebook for practitioners as well as graduate students in the sciences and engineering.
This text takes the student with a background in undergraduate physics and mathematics towards the skills and insights needed for graduate work in theoretical physics. The author uses Green's functions to explore the physics of potentials, diffusion, and waves. These are important phenomena in their own right, but this study of the partial differential equations describing them also prepares the student for more advanced applications in many-body physics and field theory. Calculations are carried through in enough detail for self-study, and case histories illustrate the interplay between physical insight and mathematical formalism. The aim is to develop the habit of dialogue with the equations and the craftsmanship this fosters in tackling the problem. The book is based on the author's extensive teaching experience.
Green's functions represent one of the classical and widely used issues in the area of differential equations. This monograph is looking at applied elliptic and parabolic type partial differential equations in two variables. The elliptic type includes the Laplace, static Klein-Gordon and biharmonic equation. The parabolic type is represented by the classical heat equation and the Black-Scholes equation which has emerged as a mathematical model in financial mathematics. The book is attractive for practical needs: It contains many easily computable or computer friendly representations of Green's functions, includes all the standard Green's functions and many novel ones, and provides innovative and new approaches that might lead to Green's functions. The book is a useful source for everyone who is studying or working in the fields of science, finance, or engineering that involve practical solution of partial differential equations.
Presentation of the basic theoretical formulation of Green's functions, followed by specific applications: transport coefficients of a metal, Coulomb gas, Fermi liquids, electrons and phonons, superconductivity, superfluidity, and magnetism. 1984 edition.
Praise for the Second Edition "This book is an excellent introduction to the wide field of boundary value problems."—Journal of Engineering Mathematics "No doubt this textbook will be useful for both students and research workers."—Mathematical Reviews A new edition of the highly-acclaimed guide to boundary value problems, now featuring modern computational methods and approximation theory Green's Functions and Boundary Value Problems, Third Edition continues the tradition of the two prior editions by providing mathematical techniques for the use of differential and integral equations to tackle important problems in applied mathematics, the physical sciences, and engineering. This new edition presents mathematical concepts and quantitative tools that are essential for effective use of modern computational methods that play a key role in the practical solution of boundary value problems. With a careful blend of theory and applications, the authors successfully bridge the gap between real analysis, functional analysis, nonlinear analysis, nonlinear partial differential equations, integral equations, approximation theory, and numerical analysis to provide a comprehensive foundation for understanding and analyzing core mathematical and computational modeling problems. Thoroughly updated and revised to reflect recent developments, the book includes an extensive new chapter on the modern tools of computational mathematics for boundary value problems. The Third Edition features numerous new topics, including: Nonlinear analysis tools for Banach spaces Finite element and related discretizations Best and near-best approximation in Banach spaces Iterative methods for discretized equations Overview of Sobolev and Besov space linear Methods for nonlinear equations Applications to nonlinear elliptic equations In addition, various topics have been substantially expanded, and new material on weak derivatives and Sobolev spaces, the Hahn-Banach theorem, reflexive Banach spaces, the Banach Schauder and Banach-Steinhaus theorems, and the Lax-Milgram theorem has been incorporated into the book. New and revised exercises found throughout allow readers to develop their own problem-solving skills, and the updated bibliographies in each chapter provide an extensive resource for new and emerging research and applications. With its careful balance of mathematics and meaningful applications, Green's Functions and Boundary Value Problems, Third Edition is an excellent book for courses on applied analysis and boundary value problems in partial differential equations at the graduate level. It is also a valuable reference for mathematicians, physicists, engineers, and scientists who use applied mathematics in their everyday work.
Since its introduction in 1828, using Green's functions has become a fundamental mathematical technique for solving boundary value problems. Most treatments, however, focus on its theory and classical applications in physics rather than the practical means of finding Green's functions for applications in engineering and the sciences. Green's
Since its publication more than 15 years ago, Heat Conduction Using Green's Functions has become the consummate heat conduction treatise from the perspective of Green's functions-and the newly revised Second Edition is poised to take its place. Based on the authors' own research and classroom experience with the material, this book organizes the so