Download Free Antiviral And Antimicrobial Coatings Based On Functionalized Nanomaterials Book in PDF and EPUB Free Download. You can read online Antiviral And Antimicrobial Coatings Based On Functionalized Nanomaterials and write the review.

Antiviral and Antimicrobial Coatings Based on Functionalized Nanomaterials: Design, Applications, and Devices is the first book on functionalized nanoparticles-based coatings that encompasses the majority of aspects of antimicrobial and antiviral coatings. The use of functionalized nanoparticles has revolutionized all fields of science and engineering, and this book provides the reader with a fundamental, interdisciplinary look at this emerging field. It focuses on the most advanced coating systems being utilized by various industries including a discussion of the current challenges to be considered during manufacturing. This book provides both academics and those working in industry with a broad-based introduction to the area of modern antimicrobial coatings practices. - Describes functionalized nanoparticles-based antimicrobial and antiviral coatings utilized in modern industrial platforms - Evaluates functionalized nanoparticles-based antimicrobial and antiviral coatings as prime options for sustainable and transformational opportunities - Serves as a reference for scientists and engineers who are searching for modern design techniques for antimicrobial and antiviral coatings systems
It is essential to harness the potential of nanotechnology in a rapidly evolving industrial environment. As industries grapple with the demand for more advanced, efficient, and sustainable solutions, the intricate amalgamation of chemistry, materials science, physics, biology, and technology in nanotechnology emerges as both a beacon of promise and a complex puzzle. The groundbreaking book, Sustainable Approach to Protective Nanocoatings, serves as a transformative solution. Tailored for academic scholars seeking comprehensive insights, this book navigates the labyrinth of nanotechnology with precision, offering a roadmap for leveraging nanostructured materials and coatings to meet the demands of the modern industrial world. By seamlessly weaving together the intricate tapestry of research methodologies, applications, and technological advances, the book emerges as an indispensable resource for those poised at the intersection of academia and industry.
Nanomaterials, due to their tiny size and exceptional characteristics, are leading the way in scientific innovation, marking the beginning of a new era of technological progress and offering solutions to critical challenges faced by humanity. From their origin and theoretical foundations to their combination and extensive practical uses, the exploration of nanomaterials encompasses a wide range of knowledge and profound understanding, providing valuable perspectives on their revolutionary influence on different sectors of the economy. Nanomaterials possess distinctive characteristics, including enhanced strength, chemical reactivity, and electrical conductivity, distinguishing them from their larger counterparts. These characteristics stimulate innovative uses and improve current technologies, making them crucial in advancing engineering, medicine, energy solutions, and environmental sustainability. Exploring Nanomaterial Synthesis, Characterization, and Applications focuses on the interdisciplinary aspects of nanomaterials research and highlights their contributions to the advancement of medical science. This book offers a comprehensive overview of the present state of nanomaterial science and provide a glimpse into its promising future. Covering topics such as biosensing, energy storage, and pharmaceutical technology, this book is an excellent resource for academicians, researchers, graduate and postgraduate students, industry professionals, engineers, product developers, medical practitioners, policymakers, and more.
Cutting-Edge Applications of Nanomaterials in Biomedical Sciences is a comprehensive exploration of the revolutionary impact of nanotechnology on the field of medicine. This book delves into the remarkable potential of nanomaterials in advancing medical diagnostics and therapeutics, particularly in drug delivery. It serves as an indispensable guide, presenting the latest developments in nanomedicine, precision medicine, and nanoengineering while addressing the challenges and opportunities that arise. The book covers a wide range of topics, from nanomaterials for cancer therapy to their applications in imaging and diagnostics. It discusses the transformative role of nanomaterials in targeted delivery and controlled release, as well as their potential in regenerative medicine and infectious disease diagnosis and treatment. By presenting cutting-edge research and developments in the field, this book aims to bridge the gap between bench and bedside, providing a vital resource for researchers, clinicians, and students in the biomedical sciences. Moreover, it highlights the commercialization potential of nanomedicine, fostering collaboration between academia and industry. Policymakers and regulators will also find this book invaluable for understanding the ethical and safety implications of incorporating nanomaterials into medical practices.
This book highlights all newly reported carbon nanostructures including graphene and its derivatives, carbon nanotubes, metal organic frameworks, fullerenes, nanorods, nanospheres, nano onions, porous nanoparticles, nanohorns, nanofibers and nanoribbons, nanodiamonds, graphitic carbon nitrides, carbon aerogels and hydrogels, graphdiyne and graphenylene. It presents the historical development of carbon nanostructures technologies, different types and classifications, and different fabrication and functionalization techniques, including outer/inner surface functionalization and covalent and noncovalent functionalization. This Handbook discusses the unique properties of functionalized carbon nanostructures that can be obtained by modifying their structures, composition, and surface. It gives the reader an in-depth look at the current achievements of research and practice while pointing you ahead to new possibilities in functionalizing and using carbon nanomaterials. Finally, it covers the various applications of functionalized carbon nanostructures including adsorbents, additives, active materials in energy accumulating systems (batteries, hydrogen storage systems, and supercapacitors), filtering media, catalysts or supports for catalysts, sensors or substrates for sensors, additives for polymers, ceramic composites, metal and carbon alloys, glasses, digital textiles, and composite materials.
Antiviral and Antimicrobial Smart Coatings: Fundamentals and Applications provides a critical analysis of all types of smart antiviral and antimicrobial coatings currently being researched. The book opens with a discussion of the microbial and viral pathogens, including how to identify them and their interaction with surfaces. The next three sections look at the concept of smart coatings, specifically antibacterial, antifungal, and antiviral smart coatings, types, effects, and applications. The book concludes by discussing the methods and standards for characterization of coatings and then presents several real world case studies. A valuable resource for those working in the smart coatings field. Introduces the concepts of smart coatings and the synthesis, characterization, and classification Provides insights into the pros and cons of established processes and thereby provides guidance on how to select the appropriate techniques for specific applications Discusses the process of applying smart antimicrobial and antiviral coatings on various surfaces Presents the methods for characterization of smart and multifunctional coatings
Phytochemistry in Corrosion Science covers the use of plant extracts/phytochemicals in corrosion mitigation with industrial applications. It explores innovative and characterization approaches toward the utilization of plant extracts and their phytochemicals as potential corrosion inhibitors for several metals and their alloys. Providing a comprehensive overview of the green aspects of plant extracts as corrosion inhibitors, this book discusses the preparation of aqueous and organic phase extracts, and their advantages, disadvantages, and use for different aggressive media. It also examines aqueous and organic extracts that have been successfully used as corrosion inhibitors for various metals and electrolyte combinations. This book will be a useful reference for undergraduate and graduate students and academic researchers in the fields of phytochemistry, corrosion science and engineering, environmental science, chemical engineering, green chemistry, and mechanical/industrial engineering.