Download Free Antiprotozoal Drug Discovery A Challenge That Remains Book in PDF and EPUB Free Download. You can read online Antiprotozoal Drug Discovery A Challenge That Remains and write the review.

Protozoan infections that are endemic in countries with limited economic resources pose a significant public health challenge to affected communities and some of these diseases are categorized as neglected tropical diseases by the World Health Organization. At the moment, there is an urgent need to identify and develop new antiprotozoal drugs. Antiprotozoal Drug Discovery: A Challenge That Remains brings together research from all scientists (including parasitologists, chemists, biologists among others) involved in the field of antiprotozoal experimental pharmacology, drug design and natural product research. The monograph is a compilation of review chapters written by experts on medical parasitology and pharmacology that covers a wide range of topics such as general characteristics of protozoan diseases (malaria, toxoplasmosis, Chagas’ disease, leishmaniasis, trichomoniasis) prophylaxis, treatments, natural products and rational drug design. The contents of this book are useful to medical microbiologists and pharmaceutical scientists seeking to update their knowledge about antiprotozoal drug design.
Malaria is making a dramatic comeback in the world. The disease is the foremost health challenge in Africa south of the Sahara, and people traveling to malarious areas are at increased risk of malaria-related sickness and death. This book examines the prospects for bringing malaria under control, with specific recommendations for U.S. policy, directions for research and program funding, and appropriate roles for federal and international agencies and the medical and public health communities. The volume reports on the current status of malaria research, prevention, and control efforts worldwide. The authors present study results and commentary on the: Nature, clinical manifestations, diagnosis, and epidemiology of malaria. Biology of the malaria parasite and its vector. Prospects for developing malaria vaccines and improved treatments. Economic, social, and behavioral factors in malaria control.
This book reviews new promising drug targets for Neglected Tropical Diseases (NTDs), with a special focus on antiprotozoal drugs against trpyanosomatids Trypanosoma cruzi and Leishmania spp. The book offers a comprehensive overview of the most recent studied targets, and it outlines classical and new treatments and delivery strategies. Expert contributors describe new methods of analysis and bio-prospecting for new compounds, and provide a critical perspective of the translational process used in the research and development of new drug candidates. The book will appeal not only to researchers, students and professionals interested in drug development to protozoan diseases, but also to medicinal chemists in general.
Bioassay Methods in Natural Product Research and Drug Development contains the proceedings from the Phytochemical Society of Europe's very successful symposium on this topic, held August 24-27, 1997 in Uppsala, Sweden. In this volume, leading academic and industrial scientists discuss novel methods for assaying natural products to find new structure-activity relationships. Of key importance in this process is the availability and reliability of specific bioassay methods, but chapters also discuss chemical and biological diversity and how to dereplicate natural product extracts to increase efficiency in lead discovery. Anti-tumor, HIV-inhibitory, antiprotozoal, anti-infective and immunomodulatory natural products are discussed. Various industrial projects are presented for the first time. This volume bridges the gap between academic and industrial research and scientists, and should be required reading in drug companies and faculties of pharmacy, as well as serving scientists in pharmacognosy, pharmacology, phytochemistry, natural products and drug discovery.
Written and edited by experts in the field, this book brings together the current state of the art in phenotypic and rational, target-based approaches to drug discovery against pathogenic protozoa. The chapters focus particularly on virtual compounds and high throughput screening, natural products, computer-assisted drug design, structure-based drug design, mechanism of action identification, and pathway modelling. Furthermore, state-of the art "omics" technologies are described and currently studied enzymatic drug targets are discussed. Mathematical, systems biology-based approaches are introduced as new methodologies for dissecting complex aspects of pathogen survival mechanisms and for target identification. In addition, recently developed anti-parasitic agents targeting particular pathways, which serve as lead compounds for further drug development, are presented.
For more than 50 years, low-cost antimalarial drugs silently saved millions of lives and cured billions of debilitating infections. Today, however, these drugs no longer work against the deadliest form of malaria that exists throughout the world. Malaria deaths in sub-Saharan Africaâ€"currently just over one million per yearâ€"are rising because of increased resistance to the old, inexpensive drugs. Although effective new drugs called "artemisinins" are available, they are unaffordable for the majority of the affected population, even at a cost of one dollar per course. Saving Lives, Buying Time: Economics of Malaria Drugs in an Age of Resistance examines the history of malaria treatments, provides an overview of the current drug crisis, and offers recommendations on maximizing access to and effectiveness of antimalarial drugs. The book finds that most people in endemic countries will not have access to currently effective combination treatments, which should include an artemisinin, without financing from the global community. Without funding for effective treatment, malaria mortality could double over the next 10 to 20 years and transmission will intensify.
Drug repurposing is defined as identifying new pharmacological indications from old, existing, failed, investigational, already marketed, or FDA-approved drugs and prodrugs, and applying these new uses in the treatment of diseases other than the drug’s original intended therapeutic use. The application of computational techniques in discovery research not only helps in the development of drugs from leads or existing drug molecules but can also be useful for the repurposing of existing drug candidates. This new volume presents exciting recent advances in drug repurposing and computational approaches for the discovery and development of drugs against certain difficult-to-treat and life-threatening diseases. With contributions from a global team of experts (academicians, scientists, and researchers), it explores the sophisticated tools and techniques of drug repurposing and computational drug discovery. It delivers valuable information on computational techniques, tools, and databases being utilized for drug repurposing and for identifying the uses of existing drug candidates on different emerging or deadly diseases. Drug repurposing and computational approaches addressed in the book target the discovery and development of drugs for microbial infections (bacterial, fungal, viral, COVID-19), parasitic diseases and neglected tropical diseases (NTDs), malignant diseases (cancer), inflammatory diseases, cardiovascular disorders, diabetes, and aging and neurological (CNS) disorders. In addition, the challenges and regulatory issues encountered in drug repurposing and computational drug discovery programs are looked at, offering perspectives for future directions.
The use of drugs in food animal production has resulted in benefits throughout the food industry; however, their use has also raised public health safety concerns. The Use of Drugs in Food Animals provides an overview of why and how drugs are used in the major food-producing animal industriesâ€"poultry, dairy, beef, swine, and aquaculture. The volume discusses the prevalence of human pathogens in foods of animal origin. It also addresses the transfer of resistance in animal microbes to human pathogens and the resulting risk of human disease. The committee offers analysis and insight into these areas: Monitoring of drug residues. The book provides a brief overview of how the FDA and USDA monitor drug residues in foods of animal origin and describes quality assurance programs initiated by the poultry, dairy, beef, and swine industries. Antibiotic resistance. The committee reports what is known about this controversial problem and its potential effect on human health. The volume also looks at how drug use may be minimized with new approaches in genetics, nutrition, and animal management.
This volume is the specially commissioned supplement to the journal Parasitology, volume 114.
This book serves as essential reading for research scientists and biotechnologists from both academia and industry working in marine biotechnology and related disciplines. The book discusses recent advances and challenges in terms of science, technology, innovation, and policy for the development of the field; and how marine biotechnology may provide new solutions to some of the grand challenges faced by our society. Written in an accessible language, the book is also recommended as a reference text for decision-makers in government and non-governmental organizations in their efforts to foster the development of a global blue economy. With less than 5 % of the vast and rich marine environment explored, our seas and oceans represent a virtually unexplored resource for the discovery of novel product, processes, and development of bio-inspired synthetic drugs with biotechnological potential. As such, the marine environment has been considered Earth's last frontier of exploration. Recent advances in molecular techniques are providing the necessary tools to access on a larger scale the still-untapped ocean resources and, consequently, unveil the promise of the blue biotechnology. Governments are recognizing the potential of marine biotechnology to provide solutions to some of the Grand Challenges of the 21st Century such as sustainable energy and food sources, identification of novel drugs for improved health treatments, and providing new industrial materials and processes. For this reason, advances in marine biotechnology may foster the much-needed source of innovation and economic growth in many countries, and pave the way towards the development of a global blue economy, i.e. a new economic model based on the sustainable exploration of our ocean ecosystems.