Download Free Antineutrino Oscillations And A Search For Non Standard Interactions With The Minos Book in PDF and EPUB Free Download. You can read online Antineutrino Oscillations And A Search For Non Standard Interactions With The Minos and write the review.

MINOS searches for neutrino oscillations using the disappearance of muon neutrinos from the NuMI beam at Fermilab between two detectors. The Near Detector, located near the source, measures the beam composition before flavor change occurs. The energy spectrum is measured again at the Far Detector after neutrinos travel a distance. The mixing angle and mass splitting between the second and third mass states are extracted from the energy dependent difference between the spectra at the two detectors. NuMI is able to produce an antineutrino-enhanced beam as well as a neutrino-enhanced beam. Collecting data in antineutrino-mode allows the direct measurement of antineutrino oscillation parameters. From the analysis of the antineutrino mode data we measure $
MINOS stands for Main Injector Neutrino Oscillation Search. It is a long baseline experiment located in the USA and is composed of two detectors. The Near Detector is at Fermilab, 1 km from the source of neutrinos. The Far Detector is in Minnesota at a distance of 735 km from the source. Both detectors are steel scintillator tracking calorimeters. MINOS searches for neutrino oscillations by comparing the neutrino energy spectrum at the Far Detector with that obtained from a prediction based on the spectrum at the Near Detector. The primary aim of MINOS is to measure the atmospheric oscillation parameters [Delta]m2 32 and [theta]23. CPT symmetry requires that these parameters should be same for neutrinos and antineutrinos. Di erences between neutrino and antineutrino oscillations would be an indication of new physics beyond the neutrino-Standard Model (SM). Additionally, violation of Lorentz or CPT symmetry could also give rise to oscillations di erent from that expected from the SM predictions, such as neutrino to antineutrino transitions.
The Main Injector Neutrino Oscillation Search (MINOS) is a long baseline experiment that was built for studying the neutrino oscillation phenomena. The MINOS experiment uses high intensity muon neutrino and antineutrino beams created by Neutrinos at the Main Injector facility (NuMI) at the Fermi National Accelerator Laboratory (Fermilab). Neutrino interactions are recorded by two sampling steel-scintillator tracking calorimeters: 0.98\, kton Near Detector at Fermilab, IL and 5.4\, kton Far Detector at the Soudan Underground Laboratory, MN. These two detectors are functionally identical, which helps to reduce the systematic uncertainties in the muon neutrino and antineutrino disappearance measurements. The Near Detector, located 1.04\, km from the neutrino production target, is used to measure the initial beam composition and neutrino energy proximal to the neutrino source. The collected data at the Near Detector is then used to predict energy spectrum in the Far Detector. By comparing this prediction to collected data at the Far Detector, which is 735\, km away from the target, it enables a measurement of a set of parameters that govern the neutrino oscillation phenomenon. \\ \indent The flexibility of the NuMI beam configuration and the magnetization of the MINOS detectors facilitate the identification of $\nu_{\mu}$ and $\bar{\nu}_{\mu}$ charged-current interactions on an event-by-event basis. This enables one to measure neutrino and antineutrino oscillation parameters independently and therefore allows us to test the CPT symmetry in the lepton sector. To enhance the sensitivity of the oscillation parameters measurement, a number of techniques have been implemented. Event classification, shower energy estimation and energy resolution bin fitting, which are described in this dissertation, are three of these techniques. Moreover, the most stringent constraints on oscillation parameters can be achieved by combining multiple data sets. \\ \indent This dissertation reports the measurement of antineutrino oscill! ation parameters using the complete MINOS accelerator and atmospheric data set of charged-current $\bar{\nu}_{\mu}$ events. This set comprises exposures of (i) 3.36\times 10^{20} proton-on-target (POT) in the \bar{\nu}_{\mu}-beam mode, (ii) 10.71\times 10^{20} POT in the \nu_{\mu}-beam mode, and (iii) 37.88 kton yr of atmospheric antineutrinos. The data analysis provides the world's most precise measurement to date on the antineutrino oscillation parameters: $
This thesis presents measurements of the oscillations of muon antineutrinos in the atmospheric sector, where world knowledge of antineutrino oscillations lags well behind the knowledge of neutrinos, as well as a search for v? → $ar{v}$? transitions. Differences between neutrino and antineutrino oscillations could be a sign of physics beyond the Standard Model, including non-standard matter interactions or the violation of CPT symmetry. These measurements leverage the sign-selecting capabilities of the magnetized steel-scintillator MINOS detectors to analyze antineutrinos from the NuMI beam, both when it is in neutrino-mode and when it is in antineutrino-mode. Antineutrino oscillations are observed at.
The Main Injector Neutrino Oscillation Search (MINOS) is a long baseline experiment that was built for studying the neutrino oscillation phenomena. The MINOS experiment uses high intensity muon neutrino and antineutrino beams created by Neutrinos at the Main Injector facility (NuMI) at the Fermi National Accelerator Laboratory (Fermilab). Neutrino interactions are recorded by two sampling steel-scintillator tracking calorimeters: 0.98 kton Near Detector at Fermilab, IL and 5.4 kton Far Detector at the Soudan Underground Laboratory, MN. These two detectors are functionally identical, which helps to reduce the systematic uncertainties in the muon neutrino and antineutrino disappearance measurements. The Near Detector, located 1.04 km from the neutrino production target, is used to measure the initial beam composition and neutrino energy proximal to the neutrino source. The collected data at the Near Detector is then used to predict energy spectrum in the Far Detector. By comparing this prediction to collected data at the Far Detector, which is 735 km away from the target, it enables a measurement of a set of parameters that govern the neutrino oscillation phenomenon. The flexibility of the NuMI beam configuration and the magnetization of the MINOS detectors facilitate the identification of v[subscript mu] and v̄[subscript mu] charged-current interactions on an event-by-event basis. This enables one to measure neutrino and antineutrino oscillation parameters independently and therefore allows us to test the CPT symmetry in the lepton sector. To enhance the sensitivity of the oscillation parameters measurement, a number of techniques have been implemented. Event classification, shower energy estimation and energy resolution bin fitting, which are described in this dissertation, are three of these techniques. Moreover, the most stringent constraints on oscillation parameters can be achieved by combining multiple data sets. This dissertation reports the measurement of antineutrino oscillation parameters using the complete MINOS accelerator and atmospheric data set of charged-current v̄[subscript mu] events.
The MINOS experiment at Fermilab has recently reported a tension between the oscillation results for neutrinos and anti-neutrinos. We show that this tension, if it persists, can be understood in the framework of non-standard neutrino interactions (NSI). While neutral current NSI (non-standard matter effects) are disfavored by atmospheric neutrinos, a new charged current coupling between tau neutrinos and nucleons can fit the MINOS data without violating other constraints. In particular, we show that loop-level contributions to flavor-violating [tau] decays are sufficiently suppressed. However, conflicts with existing bounds could arise once the effective theory considered here is embedded into a complete renormalizable model. We predict the future sensitivity of the T2K and NOvA experiments to the NSI parameter region favored by the MINOS fit, and show that both experiments are excellent tools to test the NSI interpretation of the MINOS data.
The enthusiasm of the scientific community for studying oscillations of neutrinos is equaled only by the mass of their detectors. The MINOS experiment determines and compares the near spectrum of muonic neutrinos from the NUMI beam to the far one, in order to measure two oscillation parameters: {Delta}m{sub 23}{sup 2} and sin{sup 2} (2{theta}{sub 23}). The spectra are obtained by analyzing the charged current interactions which difficulty lies in identifying the interactions products (e.g. muons). An alternative method identifying the traces of muons, bent by the magnetic field of the detectors, and determining their energies is presented in this manuscript. The sensitivity of the detectors is optimal for the quasi-elastic interactions, for which a selection method is proposed, to study their oscillation. Even though it reduces the statistics, such a study introduces fewer systematic errors, constituting the ideal method on the long range.
This thesis highlights data from MINOS, a long-baseline accelerator neutrino experiment, and details one of the most sensitive searches for the sterile neutrino ever made. Further, it presents a new analysis paradigm to enable this measurement and a comprehensive study of the myriad systematic uncertainties involved in a search for a few-percent effect, while also rigorously investigating the statistical interpretation of the findings in the context of a sterile neutrino model. Among the scientific community, this analysis was quickly recognized as a foundational measurement in light of which all previous evidence for the sterile neutrino must now be (re)interpreted. The existence of sterile neutrinos has long been one of the key questions in the field. Not only are they a central component in many theories of new physics, but a number of past experiments have yielded results consistent with their existence. Nonetheless, they remain controversial: the interpretation of the data showing evidence for these sterile neutrinos is hotly debated.
We searched for a sidereal modulation in the rate of neutrinos observed by the MINOS far detector. The detection of these signals could be a signature of neutrino-antineutrino mixing due to Lorentz and CPT violation as described by the Standard-Model Extension framework. We found no evidence for these sidereal signals and we placed limits on the coefficients in this theory describing the effect.
MINOS, Main Injector Neutrino Oscillation Search, is a long-baseline neutrino oscillation experiment in the NuMI muon neutrino beam at the Fermi National Accelerator Laboratory in Batavia, IL. It consists of two detectors, a near detector positioned 1km from the source of the beam and a far detector 734km away in Minnesota. MINOS is primarily designed to observe muon neutrino disappearance resulting from three avor oscillations. The Standard Model of Particle Physics predicts that neutrinos oscillate between three active avors as they propagate through space. This means that a muon type neutrino has a certain probability to later interact as a di erent type of neutrino. In the standard picture, the neutrino oscillation probabilities depend only on three neutrino avors and two mass splittings, [Delta]m2. An anomaly was observed by the LSND and MiniBooNE experiments that suggests the existence of a fourth, sterile neutrino avor that does not interact through any of the known Standard Model interactions. Oscillations into a theoretical sterile avor may be observed by a de cit in neutral current interactions in the MINOS detectors. A distortion in the charged current energy spectrum might also be visible if oscillations into the sterile avor are driven by a large mass-squared di erence, m2s 1 eV2. The results of the 2013 sterile neutrino search are presented here.