Download Free Antimetabolites And Cancer Book in PDF and EPUB Free Download. You can read online Antimetabolites And Cancer and write the review.

Medicinal Chemistry of Anticancer Drugs, Second Edition, provides an updated treatment from the point of view of medicinal chemistry and drug design, focusing on the mechanism of action of antitumor drugs from the molecular level, and on the relationship between chemical structure and chemical and biochemical reactivity of antitumor agents. Antitumor chemotherapy is a very active field of research, and a huge amount of information on the topic is generated every year. Cytotoxic chemotherapy is gradually being supplemented by a new generation of drugs that recognize specific targets on the surface or inside cancer cells, and resistance to antitumor drugs continues to be investigated. While these therapies are in their infancy, they hold promise of more effective therapies with fewer side effects. Although many books are available that deal with clinical aspects of cancer chemotherapy, this book provides a sorely needed update from the point of view of medicinal chemistry and drug design. - Presents information in a clear and concise way using a large number of figures - Historical background provides insights on how the process of drug discovery in the anticancer field has evolved - Extensive references to primary literature
An essential text, this is a fully updated second edition of a classic, now in two volumes. It provides rapid access to information on molecular pharmacology for research scientists, clinicians and advanced students. With the A-Z format of over 2,000 entries, around 350 authors provide a complete reference to the area of molecular pharmacology. The book combines the knowledge of classic pharmacology with the more recent approach of the precise analysis of the molecular mechanisms by which drugs exert their effects. Short keyword entries define common acronyms, terms and phrases. In addition, detailed essays provide in-depth information on drugs, cellular processes, molecular targets, techniques, molecular mechanisms, and general principles.
Chemotherapy is one of the major treatment options for cancer patients; however, the efficacy of chemotherapeutic management of cancer is severely limited by multidrug resistance, in that cancer cells become simultaneously resistant to many structurally and mechanistically unrelated drugs. In the past three decades, a number of mechanisms by which cancer cells acquire multidrug resistance have been discovered. In addition, the development of agents or strategies to overcome resistance has been the subject of intense study. This book contains comprehensive and up-to-date reviews of multidrug resistance mechanisms, from over-expression of ATP-binding cassette drug transporters such as P-glycoprotein, multidrug resistance-associated proteins, and breast cancer resistance p- tein to the drug ratio-dependent antagonism and the paradigm of cancer stem cells. The book also includes strategies to overcome multidrug resistance, from the development of compounds that inhibit drug transporter function to the modulation of transporter expression. In addition, this book contains techniques for the detection and imaging of drug transporters, methods for the investigation of drug resistance in animal models, and strategies to evaluate the efficacy of resistance reversal agents. The book intends to provide a state-of-the-art collection of reviews and methods for both basic and clinician investigators who are interested in cancer multidrug resistance mechanisms and reversal strategies. Tianjin, China Jun Zhou v Contents Preface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v Contributors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix 1 Multidrug Resistance in Cancer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Bruce C. Baguley 2 Multidrug Resistance in Oncology and Beyond: From Imaging of Drug Efflux Pumps to Cellular Drug Targets . . . . . . . . . . . . . . . . . . . . . . . . . .
Role of Nutraceuticals in Chemoresistance to Cancer, Volume Two, focuses on nutraceuticals, the compounds derived from natural sources, which are usually multi-targeted as a means to overcome chemoresistance. This book discusses the role of several compounds related to nutraceuticals and chemoresistance, such as curcumin, resveratrol, indole 3-carbinol, tocotrienols, ursolic acid, fisetin, celastrol, gambogic, butein, catechins and silymarin. It is a valuable resource for cancer researchers, oncologists and members of several areas of the biomedical field who are interested in understanding how to use nutraceuticals as a sensitizing agent for chemotherapy. - Brings updated information on natural compounds used as specific inhibitors of cell signaling pathways as reviewed by experts in the field - Presents experts analysis and summary of reported and novel findings and potential translational application in cancer patients - Describes molecular mechanisms with new and helpful approaches for the readers to use in their own investigations
Cancer Pharmacology: An Illustrated Manual of Anticancer Drugs provides a one-stop guide to the essential basic and clinical science of all the effective, life-prolonging drug therapies in oncology. From traditional cytotoxic agents to targeted genomic, epigenomic, hormonal, and immunotherapeutic agents, this book covers the staggering advances in cancer pharmacology that are propelling new standards of care for common and uncommon malignancies. Beautifully illustrated throughout, each chapter contains visually engaging figures detailing the tumor microenvironment, chemical structures of agents, pharmacodynamics, pharmacokinetics, pharmacogenomic, and molecular properties of the various agents, and their mechanisms of action. As the first illustrated book of its kind, this highly visual text uses a uniform approach to each cancer drug class and agent presented in the book, and covers alkylating agents, antimetabolites, antimitotics, epigenetic modulators, hormonal agents, targeted therapies, monoclonal antibodies, immunotherapeutic agents, and much more. Flow diagrams, clinical tables, and bulleted text further explain important information pertaining to each cancer drug class including their indications, mechanisms of action, potential adverse reactions, dosing and dose adjustments, and safety monitoring. Organized in an easyto- digest format and replete with detailed images, clinical pearls, and end of chapter Q&As, this evidence-based reference presents all major classes, agents, targets, and approaches to cancer pharmacotherapy. Whether you are a trainee, a clinical scientist, or a clinician in practice, the book is an ideal reference. It presents challenging information in an instructional way, illustrates key concepts for ease of retention, and poses tough questions so readers can problem solve potential scenarios and test their pharmacologic acumen. Written by leading experts in oncopharmacology, this first-of-its kind manual is a “must have” for anyone involved in the basic, translational, or clinical aspects of oncology and hematology including clinicians, pharmacists, nurses, and trainees. KEY FEATURES: Includes visual depictions of chemical structures, pharmacokinetics, pharmacodynamics, and pharmacogenomics associated with each class of agents Describes how chemotherapy, targeted therapy, immunotherapy, and hormonal therapy work and why they are expected to work adjuvantly, neoadjuvantly, and in combination with other modalities Over 100 highly stylized images and numerous comprehensive tables Covers challenges related to drug development, drug approval, and regulatory issues in relation to anticancer treatments All chapters conclude with clinical pearls and detailed clinical Q&As with descriptive rationales Purchase includes access to the ebook for use on most mobile devices or computers
This textbook builds on the success of the earlier edition, offering alternative strategies for discovering new antibiotics. It discusses how the various types of antibiotics and related drugs work to cure infections. Then it delves into the very serious matter of how bacteria are becoming resistant to these antibiotics. It also covers the global action plan on antimicrobial resistance from the World Health Organization and discusses several Antibiotic Stewardship Programs adopted by agencies at local levels. Appropriate for a one-semester course at either the graduate or advanced undergraduate level, the book is self-contained and written in accessible language. It includes all necessary background biochemistry material and a discussion of the latest developments in the field of antibiotics. Original research works are frequently cited and experimental procedures and interpretation of results are emphasized.
Genetic alterations in cancer, in addition to being the fundamental drivers of tumorigenesis, can give rise to a variety of metabolic adaptations that allow cancer cells to survive and proliferate in diverse tumor microenvironments. This metabolic flexibility is different from normal cellular metabolic processes and leads to heterogeneity in cancer metabolism within the same cancer type or even within the same tumor. In this book, we delve into the complexity and diversity of cancer metabolism, and highlight how understanding the heterogeneity of cancer metabolism is fundamental to the development of effective metabolism-based therapeutic strategies. Deciphering how cancer cells utilize various nutrient resources will enable clinicians and researchers to pair specific chemotherapeutic agents with patients who are most likely to respond with positive outcomes, allowing for more cost-effective and personalized cancer therapeutic strategies.
Advances in anti-cancer chemotherapy over recent years have led to improved efficacy in curing or controlling many cancers. Some chemotherapy-related side-effects are well recognized and include: nausea, vomiting, bone marrow suppression, peripheral neuropathy, cardiac and skeletal muscle dysfunction and renal impairment. However, it is becoming clearer that some chemotherapy-related adverse effects may persist even in long term cancer survivors. Problems such as cognitive, cardiovascular and gastrointestinal dysfunction, and neuropathy may lead to substantial long term morbidity. Despite improvements in treatments to counteract acute chemotherapy-induced adverse effects, they are often incompletely effective. Furthermore, counter-measures for some acute side-effects and many potential longer term sequelae of anti-cancer chemotherapy have not been developed. Thus, new insights into prevalence and mechanisms of cancer chemotherapy-related side effects are needed and new approaches to improving tolerance and reduce sequelae of cancer chemotherapy are urgently needed. The present Research Topic focuses on adverse effects and sequelae of chemotherapy and strategies to counteract them.
This book explains the pharmacological relationships between the various systems in the human body. It offers a comprehensive overview of the pharmacology concerning the autonomic, central, and peripheral nervous systems. Presenting up-to-date information on chemical mediators and their significance, it highlights the therapeutic aspects of several diseases affecting the cardiovascular, renal, respiratory, gastrointestinal, endocrinal, and hematopoietic systems. The book also includes drug therapy for microbial and neoplastic diseases. It also comprises sections on immunopharmacology, dermatological, and ocular pharmacology providing valuable insights into these emerging and recent topics. Covering the diverse groups of drugs acting on different systems, the book reviews their actions, clinical uses, adverse effects, interactions, and subcellular mechanisms of action. It is divided into 11 parts, subdivided into several chapters that evaluate the basic pharmacological principles that govern the different types of body systems. This book is intended for academicians, researchers, and clinicians in industry and academic institutions in pharmaceutical, pharmacological sciences, pharmacy, medical sciences, physiology, neurosciences, biochemistry, molecular biology and other allied health sciences.
While drug therapies developed in the last 80 years have markedly improved treatment outcomes and the management of some types of cancers, the lack of effectiveness and side effects associated with the most common treatment types remain unacceptable. However, recent technological advances are leading to improved therapies based on targeting distinct biological pathways in cancer cells. Chemistry and Pharmacology of Anticancer Drugs is a comprehensive survey of all families of anticancer agents and therapeutic approaches currently in use or in advanced stages of clinical trials, including biological-based therapies. The book is unique in providing molecular structures for all anticancer agents, discussing them in terms of history of development, chemistry, mechanism of action, structure–function relationships, and pharmacology. It also provides relevant information on side effects, dosing, and formulation. The authors, renowned scientists in cancer research and drug discovery, also provide up-to-date information on the drug discovery process, including discussions of new research tools, tumor-targeting strategies, and fundamental concepts in the relatively new areas of precision medicine and chemoprevention. Chemistry and Pharmacology of Anticancer Drugs is an indispensable resource for cancer researchers, medicinal chemists and other biomedical scientists involved in the development of new anticancer therapies. Its breadth of coverage, clear explanations, and illustrations also make it suitable for undergraduate and postgraduate courses in medicine, pharmacy, nursing, dentistry, nutrition, the biomedical sciences, and related disciplines. Key Features: Summarizes the fundamental causes of cancer, modes of treatment, and strategies for cancer drug discovery Brings together a broad spectrum of information relating to the chemistry and pharmacology of all families of anticancer agents and therapies Includes up-to-date information on cutting-edge aspects of cancer treatments such as biomarkers, pharmacogenetics, and pharmacogenomics Features new chapters on the "Evolution of Anticancer Therapies", "Antibody-Based Therapies", and "Cancer Chemoprevention"