Download Free Antibacterial Activity Of Nanomaterials Book in PDF and EPUB Free Download. You can read online Antibacterial Activity Of Nanomaterials and write the review.

This book is a printed edition of the Special Issue "Antibacterial Activity of Nanomaterials" that was published in Nanomaterials
Bacterial pathogens have been becoming the main problem in hospital and community-acquired infections. It is hard to treat the strains that are resistant to antibiotics, due to the causing recurrent and untreatable infections. In recent years, the combination treatments and the novel technologies have been preferred to overcome the emergence of antibacterial resistance of pathogens. In this book, examples of pathogenesis by clinical cases, control by antibiotics and bioactive antimicrobials, control by novel technologies with the collection of up-to-date researches and reviews are presented. This book can be useful for researchers interested in antibacterials, bioactive compounds, and novel technologies.
An introduction to the science of nanoparticles, from fundamental principles to their use in novel applications. As a basis for understanding nanoparticle behavior, the book first outlines the principles of quantum size behavior, nanoparticles architecture, formation of semiconductor and metal nanoparticles. It then goes on to describe the chemical syntheses of nanoparticles with defined characteristics, their structural, electrical and magnetic properties, as well as current methods to monitor these properties. Among others, the following nanoparticle-based applications are discussed: Single-electron devices Ultra dense recording media Bioelectronic devices and sensors Labeling of proteins, nucleic acids and other biomaterials. With its clear structure and comprehensive coverage, backed by numerous examples from the recent literature, this is a prime reference for chemists and materials scientists working with and developing nanoparticle systems.
MICROBIAL INTERACTIONS AT NANOBIOTECHNOLOGY INTERFACES This book covers a wide range of topics including synthesis of nanomaterials with specific size, shape, and properties, structure-function relationships, tailoring the surface of nanomaterials for improving the properties, interaction of nanomaterials with proteins/microorganism/eukaryotic cells, and applications in different sectors. This book also provides a strong foundation for researchers who are interested to venture into developing functionalized nanomaterials for any biological applications in their research. Practical concepts such as modelling nanomaterials, and simulating the molecular interactions with biomolecules, transcriptomic or genomic approaches, advanced imaging techniques to investigate the functionalization of nanomaterials/interaction of nanomaterials with biomolecules and microorganisms are some of the chapters that offer significant benefits to the researchers.
Since the potential toxicity of silver nanoparticles (Ag NPs) has raised serious concerns in the biomaterials and biomedical engineering community, Silver Nanoparticles for Antibacterial Devices: Biocompatibility and Toxicity brings together the synthesis, the physicochemical properties and the biological actions of Ag NPs, as well as the clinical demands for fabricating antibacterial medical devices, discussing how to suppress the side effects of nanomaterials and how to impart to them the selective toxicity. This book presents the two primary paradigms that have emerged in probing the antibacterial applications of Ag NPs, i.e. the active attacking releasing way and the conservative defending approach by taking advantage of various short-range actions; it shows readers how the ways in which Ag NPs have behaved can be engineered purposively. With contributions from leading international experts and extensive references listed in each chapter, this volume provides the general principles on controlling the physicochemical behaviors of nanomaterials and managing their toxicity risks.
Nanostructures for Antimicrobial Therapy discusses the pros and cons of the use of nanostructured materials in the prevention and eradication of infections, highlighting the efficient microbicidal effect of nanoparticles against antibiotic-resistant pathogens and biofilms. Conventional antibiotics are becoming ineffective towards microorganisms due to their widespread and often inappropriate use. As a result, the development of antibiotic resistance in microorganisms is increasingly being reported. New approaches are needed to confront the rising issues related to infectious diseases. The merging of biomaterials, such as chitosan, carrageenan, gelatin, poly (lactic-co-glycolic acid) with nanotechnology provides a promising platform for antimicrobial therapy as it provides a controlled way to target cells and induce the desired response without the adverse effects common to many traditional treatments. Nanoparticles represent one of the most promising therapeutic treatments to the problem caused by infectious micro-organisms resistant to traditional therapies. This volume discusses this promise in detail, and also discusses what challenges the greater use of nanoparticles might pose to medical professionals. The unique physiochemical properties of nanoparticles, combined with their growth inhibitory capacity against microbes has led to the upsurge in the research on nanoparticles as antimicrobials. The importance of bactericidal nanobiomaterials study will likely increase as development of resistant strains of bacteria against most potent antibiotics continues. Shows how nanoantibiotics can be used to more effectively treat disease Discusses the advantages and issues of a variety of different nanoantibiotics, enabling medics to select which best meets their needs Provides a cogent summary of recent developments in this field, allowing readers to quickly familiarize themselves with this topic area
The 6th edition of this popular textbook covers the key areas of bacteriology, including morphology, multiplication, metabolism, genetics, bacteriophages, classification and the basic practical procedures used by bacteriologists.
Antibacterial Activity of Nanomaterials.
There is a high demand for antimicrobials for the treatment of new and emerging microbial diseases. In particular, microbes developing multidrug resistance have created a pressing need to search for a new generation of antimicrobial agents, which are effective, safe and can be used for the cure of multidrug-resistant microbial infections. Nano-antimicrobials offer effective solutions for these challenges; the details of these new technologies are presented here. The book includes chapters by an international team of experts. Chemical, physical, electrochemical, photochemical and mechanical methods of synthesis are covered. Moreover, biological synthesis using microbes, an option that is both eco-friendly and economically viable, is presented. The antimicrobial potential of different nanoparticles is also covered, bioactivity mechanisms are elaborated on, and several applications are reviewed in separate sections. Lastly, the toxicology of nano-antimicrobials is briefly assessed.
Based on a fundamental understanding of the interaction between bacteria and nanomaterials, this book highlights the latest research on the antimicrobial properties of nanomaterials and provides an invaluable blueprint for improving the antimicrobial performance of devices and products. This book introduces the reader to the progress being made in the field, followed by an outline of applications in different areas. Various methods and techniques of synthesis and characterization are detailed. The content provides insight into the ongoing research, current trends, and technical challenges in this rapidly progressing field. Therefore, this book is highly suitable for materials scientists, engineers, biologists, and technologists.