Download Free Anthropogenic Pollution Of Aquatic Ecosystems Book in PDF and EPUB Free Download. You can read online Anthropogenic Pollution Of Aquatic Ecosystems and write the review.

This book provides examples of pollutants, such as accidental oil spills and non-degradable plastic debris, which affect marine organisms of all taxa. Terrestrial runoff washes large amounts of dissolved organic materials from agriculture and industry, toxic heavy metals, pharmaceuticals, and persistent organic pollutants which end up into rivers, coastal habitats, and open waters. While this book is not intended to encyclopaedically list all kinds of pollution, it rather exemplifies the problems by concentrating on a number of serious and prominent recent developments. The chapters in this book also discuss measures to decrease and remove aquatic pollution to mitigate the stress on aquatic organisms. Aquatic ecosystems provide a wide range of ecological and economical services. In addition to providing a large share of the staple diet for a fast growing human population, oceans absorb most of the anthropogenically emitted carbon dioxide and mitigate climate change. As well as rising temperatures and ocean acidification, pollution poses increasing problems for aquatic ecosystems and organisms reducing its functioning and services which are exposed to a plethora of stress factors.
Aquatic ecosystems are currently experiencing unprecedented levels of impact from human activities including over-exploitation of resources, habitat destruction, pollution and the influence of climate change. The impacts of these activities on the microbial ecology of aquatic environments are only now beginning to be defined. One of the many implications of environmental degradation and climate change is the geographical expansion of disease- causing microbes such as those from the Vibrio genus. Elevating sea surface temperatures correlate with increasing Vibrio numbers and disease in marine animals (e.g. corals) and humans. Contamination of aquatic environments with heavy metals and other pollutants affects microbial ecology with downstream effects on biogeochemical cycles and nutrient turnover. Also of importance is the pollution of aquatic environments with antibiotics, resistance genes and the mobile genetic elements that house resistance genes from human and animal waste. Such contaminated environments act as a source of resistance genes long after an antibiotic has ceased being used in the community. Environments contaminated with mobile genetic elements that are adapted to human commensals and pathogens function to capture new resistance genes for potential reintroduction back into clinical environments. This research topic encompasses these diverse topics and describes the affect(s) of human activity on the microbial ecology and function in aquatic environments and, describes methods of restoration and for modelling disturbances.
Aldo Leopold, father of the "land ethic," once said, "The time has come for science to busy itself with the earth itself. The first step is to reconstruct a sample of what we had to begin with." The concept he expressedâ€"restorationâ€"is defined in this comprehensive new volume that examines the prospects for repairing the damage society has done to the nation's aquatic resources: lakes, rivers and streams, and wetlands. Restoration of Aquatic Ecosystems outlines a national strategy for aquatic restoration, with practical recommendations, and features case studies of aquatic restoration activities around the country. The committee examines: Key concepts and techniques used in restoration. Common factors in successful restoration efforts. Threats to the health of the nation's aquatic ecosystems. Approaches to evaluation before, during, and after a restoration project. The emerging specialties of restoration and landscape ecology.
Freshwater is a finite resource and is being deteriorated directly and indirectly by anthropogenic pressures. Preserving the quality and availability of freshwater resources is becoming one of the most pressing environmental challenges on the international horizon. To ensure the preservation as well as availability of freshwater resources, there is a need to understand the ecology of the freshwater systems, pollution problems, their impacts, restoration techniques to be opted and the conservation measures. In this backdrop the present book on ‘Freshwater Pollution Dynamics and Remediation’ has been compiled. The book provides an understanding about the present state of art, pollution impacts including the changes in the environmental quality as well as the shift in the aquatic biological communities of the fragile freshwater ecosystems. Besides, the impact of deteriorating quality of the freshwater ecosystems on the animal and human health is also discussed in detail. This book provides a comprehensive account of the techniques based on updated research in biotechnology, bio-remediation, phyto-remediation and nano-bioremediation. The role of biosorpers and biofilms as a remediation tool has also been detailed. The book is a ready reference for researchers, scientists and educators who are involved in the freshwater pollution, remediation and management studies. The book editors with an expertise in diverse research fields in freshwater ecosystems have congregated the most inclusive research accounts on the freshwater pollution and remediation and thus developed a repository of diverse knowledge on the subject
This document is intended to provide an overview of the major components of surface and ground water quality and how these relate to ecosystem and human health. Local, regional and global assessments of water quality monitoring data are used to illustrate key features of aquatic environments, and to demonstrate how human activities on the landscape can influence water quality in both positive and negative ways. Clear and concise background knowledge on water quality can serve to support other water assessments.
This book describes how man-made litter, primarily plastic, has spread into the remotest parts of the oceans and covers all aspects of this pollution problem from the impacts on wildlife and human health to socio-economic and political issues. Marine litter is a prime threat to marine wildlife, habitats and food webs worldwide. The book illustrates how advanced technologies from deep-sea research, microbiology and mathematic modelling as well as classic beach litter counts by volunteers contributed to the broad awareness of marine litter as a problem of global significance. The authors summarise more than five decades of marine litter research, which receives growing attention after the recent discovery of great oceanic garbage patches and the ubiquity of microscopic plastic particles in marine organisms and habitats. In 16 chapters, authors from all over the world have created a universal view on the diverse field of marine litter pollution, the biological impacts, dedicated research activities, and the various national and international legislative efforts to combat this environmental problem. They recommend future research directions necessary for a comprehensive understanding of this environmental issue and the development of efficient management strategies. This book addresses scientists, and it provides a solid knowledge base for policy makers, NGOs, and the broader public.
This new volume addresses the environmental impacts of pollution on freshwater aquatic ecosystems and presents sustainable management and remediation practices and advanced technology help to address the different types of pollutants. Freshwater Pollution and Aquatic Ecosystems: Environmental Impact and Sustainable Management considers the need for sustainable, efficient, and cost-effective tools and technologies to assess, monitor, and properly manage the increasing issues of aquatic pollution. It provides detailed accounts of the phenomena and mechanisms related to aquatic pollution and highlights the problems and threats associated with pollution contamination in freshwater. It provides useful insight into the sustainable and advanced pollution remediation technology adopted by different countries for the monitoring, assessment, and sustainable management of pollution. The chapters in the volume evaluate the sources of harmful pollutants, which include industrial effluents, sewage, and runoff from agricultural industries, which result in toxic microbes, organic waste, oils, and high load of nutrients. Unsustainable management practices of domestic sewage and indiscriminate use of chemical pesticides lead to the technological disturbance of aquatic biota. In addition to harming aquatic biota, these pollutants find their way into the human body through inhalation, ingestion, or absorption and finally tend to bio-accumulate in trophic levels of the food chain, which poses a major risk to human beings. This book will be a valuable resource for ecologists, environmentalists, scientists, and many others for their work in understanding and management of aquatic pollutants in freshwater biospheres.
Toxic substances threatens aquatic and terrestrial ecosystems and ultimately human health. The book is a thoughtful effort in bringing forth the role of biotechnology for bioremediation and restoration of the ecosystems degraded by toxic and heavy metal pollution. The introductory chapters of the book deal with the understanding of the issues concerned with the pollution caused by toxic elements and heavy metals and their impacts on the different ecosystems followed by the techniques involved in monitoring of the pollution. These techniques include use of bio-indicators as well as modern techniques for the assessment and monitoring of toxicants in the environment. Detailed chapters discussing the role of microbial biota, aquatic plants, terrestrial plants to enhance the accumulation efficiency of these toxic and heavy metals are followed by remediation techniques involving myco-remediation, bio-pesticides, bio-fertilizers, phyto-remediation and rhizo-filtration. A sizable portion of the book has been dedicated to the advanced bio-remediation techniques which are finding their way from the laboratory to the field for revival of the degraded ecosystems. These involve bio-films, micro-algae, genetically modified plants and filter feeders. Furthermore, the book is a detailed comprehensive account for the treatment technologies from unsustainable to sustainable. We believe academicians, researchers and students will find this book informative as a complete reference for biotechnological intervention for sustainable treatment of pollution.
With its 104 chapters, this Encyclopedia of aquatic ecotoxicology reveals the diversity of issues, problems and challenges that have faced, and are facing today, receiving environments. It also indicates ways by which tools, strategies and future investigations can contribute to correct, minimize, solve and prevent water quality degradation. Structured homogeneously, the chapters convey salient information on historical background, features, characteristics, uses and/or applications of treated topics, often complemented by illustrations and case studies, as well as by conclusions and prospects. This work is most suitable for teaching purposes. Academics, for example, could literally deliver comprehensive lectures to students simply based on chapter outlines and contents. Meet the Authors of the Encyclopedia! Check out 'Meet the Authors' under ADDITIONAL INFORMATION (Right menu).
Advances in our understanding of the nitrogen cycle and the impact of anthropogenic activities on regional to global scales depend on the expansion of scientific studies to these fast-developing regions. This book presents a series of studies from across the Americas whose aim is to highlight key natural processes that control nitrogen cycling as well as discuss the main anthropogenic influences on the nitrogen cycle in both the tropical and temperate regions of the Americas.