Download Free Antennas And Wireless Power Transfer Methods For Biomedical Applications Book in PDF and EPUB Free Download. You can read online Antennas And Wireless Power Transfer Methods For Biomedical Applications and write the review.

Antennas and Wireless Power Transfer Methods for Biomedical Applications Join the cutting edge of biomedical technology with this essential reference The role of wireless communications in biomedical technology is a significant one. Wireless and antenna-driven communication between telemetry components now forms the basis of cardiac pacemakers and defibrillators, cochlear implants, glucose readers, and more. As wireless technology continues to advance and miniaturization progresses, it’s more essential than ever that biomedical research and development incorporate the latest technology. Antennas and Wireless Power Transfer Methods for Biomedical Applications provides a comprehensive introduction to wireless technology and its incorporation into the biomedical field. Beginning with an introduction to recent developments in antenna and wireless technology, it analyzes the major wireless systems currently available and their biomedical applications, actual and potential. The result is an essential guide to technologies that have already improved patient outcomes and increased life expectancies worldwide. Readers will also find: Authored by internationally renowned researchers of wireless technologies Detailed analysis of CP implantable antennas, wearable antennas, near-field wireless power, and more Up to 100 figures that supplement the text Antennas and Wireless Power Transfer Methods for Biomedical Applications is a valuable introduction for biomedical researchers and biomedical engineers, as well as for research and development professionals in the medical device industry.
A guide to the theory and recent development in the medical use of antenna technology Antenna and Sensor Technologies in Modern Medical Applications offers a comprehensive review of the theoretical background, design, and the latest developments in the application of antenna technology. Written by two experts in the field, the book presents the most recent research in the burgeoning field of wireless medical telemetry and sensing that covers both wearable and implantable antenna and sensor technologies. The authors review the integrated devices that include various types of sensors wired within a wearable garment that can be paired with external devices. The text covers important developments in sensor-integrated clothing that are synonymous with athletic apparel with built-in electronics. Information on implantable devices is also covered. The book explores technologies that utilize both inductive coupling and far field propagation. These include minimally invasive microwave ablation antennas, wireless targeted drug delivery, and much more. This important book: Covers recent developments in wireless medical telemetry Reviews the theory and design of in vitro/in vivo testing Explores emerging technologies in 2D and 3D printing of antenna/sensor fabrication Includes a chapter with an annotated list of the most comprehensive and important references in the field Written for students of engineering and antenna and sensor engineers, Antenna and Sensor Technologies in Modern Medical Applications is an essential guide to understanding human body interaction with antennas and sensors.
This book provides an in-depth introduction to the newest technologies for designing wireless power transfer systems for medical applications. The authors present a systematic classification of the various types of wireless power transfer, with a focus on inductive power coupling. Readers will learn to overcome many challenges faced in the design a wirelessly powered implant, such as power transfer efficiency, power stability, and the size of power antennas and circuits. This book focuses exclusively on medical applications of the technology and a batteryless capsule endoscopy system and other, real wirelessly powered systems are used as examples of the techniques described.
"Join the cutting edge of biomedical technology with this essential reference The role of wireless communications in biomedical technology is a significant one. Wireless and/or antenna-driven communication between telemetry components now forms the basis of cardiac pacemakers and defibrillators, cochlear implants, glucose readers, and more. As wireless technology continues to advance and miniaturization progresses, it's more essential than ever that biomedical research and development incorporate the latest technology. Antennas and Wireless Power for Biomedical Applications provides a comprehensive introduction to wireless technology and its incorporation into the biomedical field. Beginning with an introduction to recent developments in antenna and wireless technology, it analyzes the major wireless systems currently available and their biomedical applications, actual and potential. The result is an essential guide to technologies that have already improved patient outcomes and increased life expectancies worldwide. Antennas and Wireless Power for Biomedical Applications readers will also find: Authored by internationally renowned researchers of wireless technologies Detailed analysis of CP implantable antennas, wearable antennas, near-field wireless power, and more Up to 100 figures that supplement text Antennas and Wireless Power for Biomedical Applications is a valuable introduction for biomedical researchers and biomedical engineers, as well as for research and development professionals in the medical device industry."--
Wireless power transfer (WPT) is a promising technology used to transfer electric energy from a transmitter to a receiver wirelessly without wires through various methods and technologies using time-varying electric, magnetic, or electromagnetic fields. It is an attractive solution for many industrial applications due to its many benefits over wired connections. This book discusses the theory and practical aspects of WPT technology.
Internet of Things: Challenges, Advances, and Applications provides a comprehensive introduction to IoT, related technologies, and common issues in the adoption of IoT on a large scale. It surveys recent technological advances and novel solutions for challenges in the IoT environment. Moreover, it provides detailed discussion of the utilization of IoT and its underlying technologies in critical application areas, such as smart grids, healthcare, insurance, and the automotive industry. The chapters of this book are authored by several international researchers and industry experts. This book is composed of 18 self-contained chapters that can be read, based on interest. Features: Introduces IoT, including its history, common definitions, underlying technologies, and challenges Discusses technological advances in IoT and implementation considerations Proposes novel solutions for common implementation issues Explores critical application domains, including large-scale electric power distribution networks, smart water and gas grids, healthcare and e-Health applications, and the insurance and automotive industries The book is an excellent reference for researchers and post-graduate students working in the area of IoT, or related areas. It also targets IT professionals interested in gaining deeper knowledge of IoT, its challenges, and application areas.
This book describes new circuits and systems for implantable wireless neural monitoring systems and explains the design of a batteryless, remotely-powered implantable micro-system, designed for continuous neural monitoring. Following new trends in implantable biomedical applications, the authors demonstrate a system which is capable of efficient remote powering and reliable data communication. Novel architecture and design methodologies are used for low power and small area wireless communication link. Additionally, hermetically sealed packaging and in-vivo validation of the implantable device is presented.
A guide to the theory and recent development in the medical use of antenna technology Antenna and Sensor Technologies in Modern Medical Applications offers a comprehensive review of the theoretical background, design, and the latest developments in the application of antenna technology. Written by two experts in the field, the book presents the most recent research in the burgeoning field of wireless medical telemetry and sensing that covers both wearable and implantable antenna and sensor technologies. The authors review the integrated devices that include various types of sensors wired within a wearable garment that can be paired with external devices. The text covers important developments in sensor-integrated clothing that are synonymous with athletic apparel with built-in electronics. Information on implantable devices is also covered. The book explores technologies that utilize both inductive coupling and far field propagation. These include minimally invasive microwave ablation antennas, wireless targeted drug delivery, and much more. This important book: Covers recent developments in wireless medical telemetry Reviews the theory and design of in vitro/in vivo testing Explores emerging technologies in 2D and 3D printing of antenna/sensor fabrication Includes a chapter with an annotated list of the most comprehensive and important references in the field Written for students of engineering and antenna and sensor engineers, Antenna and Sensor Technologies in Modern Medical Applications is an essential guide to understanding human body interaction with antennas and sensors.
This book presents a comprehensive coverage of the five fundamental yet intertwined pillars paving the road towards the future of connected autonomous electric vehicles and smart cities. The connectivity pillar covers all the latest advancements and various technologies on vehicle-to-everything (V2X) communications/networking and vehicular cloud computing, with special emphasis on their role towards vehicle autonomy and smart cities applications. On the other hand, the autonomy track focuses on the different efforts to improve vehicle spatiotemporal perception of its surroundings using multiple sensors and different perception technologies. Since most of CAVs are expected to run on electric power, studies on their electrification technologies, satisfaction of their charging demands, interactions with the grid, and the reliance of these components on their connectivity and autonomy, is the third pillar that this book covers. On the smart services side, the book highlights the game-changing roles CAV will play in future mobility services and intelligent transportation systems. The book also details the ground-breaking directions exploiting CAVs in broad spectrum of smart cities applications. Example of such revolutionary applications are autonomous mobility on-demand services with integration to public transit, smart homes, and buildings. The fifth and final pillar involves the illustration of security mechanisms, innovative business models, market opportunities, and societal/economic impacts resulting from the soon-to-be-deployed CAVs. This book contains an archival collection of top quality, cutting-edge and multidisciplinary research on connected autonomous electric vehicles and smart cities. The book is an authoritative reference for smart city decision makers, automotive manufacturers, utility operators, smart-mobility service providers, telecom operators, communications engineers, power engineers, vehicle charging providers, university professors, researchers, and students who would like to learn more about the advances in CAEVs connectivity, autonomy, electrification, security, and integration into smart cities and intelligent transportation systems.
Wireless sensors and sensor networks (WSNs) are nowadays becoming increasingly important due to their decisive advantages. Different trends towards the Internet of Things (IoT), Industry 4.0 and 5G Networks address massive sensing and admit to have wireless sensors delivering measurement data directly to the Web in a reliable and easy manner. These sensors can only be supported, if sufficient energy efficiency and flexible solutions are developed for energy-aware wireless sensor nodes. In the last years, different possibilities for energy harvesting have been investigated showing a high level of maturity. This book gives therefore an overview on fundamentals and techniques for energy harvesting and energy transfer from different points of view. Different techniques and methods for energy transfer, management and energy saving on network level are reported together with selected interesting applications. The book is interesting for researchers, developers and students in the field of sensors, wireless sensors, WSNs, IoT and manifold application fields using related technologies. The book is organized in four major parts. The first part of the book introduces essential fundamentals and methods, while the second part focusses on vibration converters and hybridization. The third part is dedicated to wireless energy transfer, including both RF and inductive energy transfer. Finally, the fourth part of the book treats energy saving and management strategies. The main contents are: Essential fundamentals and methods of wireless sensors Energy harvesting from vibration Hybrid vibration energy converters Electromagnetic transducers Piezoelectric transducers Magneto-electric transducers Non-linear broadband converters Energy transfer via magnetic fields RF energy transfer Energy saving techniques Energy management strategies Energy management on network level Applications in agriculture Applications in structural health monitoring Application in power grids Prof. Dr. Olfa Kanoun is professor for measurement and sensor technology at Chemnitz university of technology. She is specialist in the field of sensors and sensor systems design.