Download Free Antarctic Peninsula Climate Variability Book in PDF and EPUB Free Download. You can read online Antarctic Peninsula Climate Variability and write the review.

Published by the American Geophysical Union as part of the Antarctic Research Series, Volume 79. The Antarctic Peninsula region represents our best natural laboratory to investigate how earth's major climate systems interact and how such systems respond to rapid regional warming. The scale of environmental changes now taking place across the region is large and their pace rapid but the subsystems involved are still small enough to observe and accurately document cause and affect mechanisms. For example, clarification of ice shelf stability via the Larsen Ice Shelf is vital to understanding the entire Antarctic Ice Sheet, its climate evolution, and its response to and control of sea level. By encompassing the broadest range of interdisciplinary studies, this volume provides the global change research and educational communities a framework in which to advance our knowledge of the causes behind regional warming, the dramatic glacial and ecological responses, and the potential uniqueness of the event within the region's paleoclimate record. The volume also serves as a vital resource for public policy and governmental funding agencies as well as a means to educate the large number of ecotourists that visit the region each austral summer.
Antarctic Climate Evolution is the first book dedicated to furthering knowledge on the evolution of the world's largest ice sheet over its ~34 million year history. This volume provides the latest information on subjects ranging from terrestrial and marine geology to sedimentology and glacier geophysics. - An overview of Antarctic climate change, analyzing historical, present-day and future developments - Contributions from leading experts and scholars from around the world - Informs and updates climate change scientists and experts in related areas of study
Comprehensive, up-to-date account of polar climate change over the last one million years for researchers and advanced students in polar science.
Over the past 20 years the study of the frozen Arctic and Southern Oceans and sub-arctic seas has progressed at a remarkable pace. This third edition of Sea Ice gives insight into the very latest understanding of the how sea ice is formed, how we measure (and model) its extent, the biology that lives within and associated with sea ice and the effect of climate change on its distribution. How sea ice influences the oceanography of underlying waters and the influences that sea ice has on humans living in Arctic regions are also discussed. Featuring twelve new chapters, this edition follows two previous editions (2001 and 2010), and the need for this latest update exhibits just how rapidly the science of sea ice is developing. The 27 chapters are written by a team of more than 50 of the worlds’ leading experts in their fields. These combine to make the book the most comprehensive introduction to the physics, chemistry, biology and geology of sea ice that there is. This third edition of Sea Ice will be a key resource for all policy makers, researchers and students who work with the frozen oceans and seas.
Synopsis Antarctica's capacity to create, store and disperse ice is critical to the way our planet functions. But along the western side of the Antarctic Peninsula there has been a 40 per cent decrease in the mean annual sea ice extent since 1979. The daily life of a few thousand Adelie penguins became critical evidence of real, incontrovertible climate change. Meredith Hooper worked with key scientists in bases, on ice breakers and in research vessels. Her story focuses on the work and ideas of individual scientists and on the local animals. In it she memorably brings an outsider's non-specialist awareness to the crucial understanding of what is happening, now, to the planet we share.
Research in Antarctica in the past two decades has fundamentally changed our perceptions of the southern continent. This volume describes typical terrestrial environments of the maritime and continental Antarctic. Life and chemical processes are restricted to small ranges of ambient temperature, availability of water and nutrients. This is reflected not only in life processes, but also in those of weathering and pedogenesis. The volume focuses on interactions between plants, animals and soils. It includes aspects of climate change, soil development and biology, as well as above- and below-ground results of interdisciplinary research projects combining data from botany, zoology, microbiology, pedology, and soil ecology.
Since its discovery Antarctica has held a deep fascination for biologists. Extreme environmental conditions, seasonality and isolation have lead to some of the most striking examples of natural selection and adaptation on Earth. Paradoxically, some of these adaptations may pose constraints on the ability of the Antarctic biota to respond to climate change. Parts of Antarctica are showing some of the largest changes in temperature and other environmental conditions in the world. In this volume, published in association with the Royal Society, leading polar scientists present a synthesis of the latest research on the biological systems in Antarctica, covering organisms from microbes to vertebrate higher predators. This book comes at a time when new technologies and approaches allow the implications of climate change and other direct human impacts on Antarctica to be viewed at a range of scales; across entire regions, whole ecosystems and down to the level of species and variation within their genomes. Chapters address both Antarctic terrestrial and marine ecosystems, and the scientific and management challenges of the future are explored.
The Intergovernmental Panel on Climate Change (IPCC) is the leading international body for assessing the science related to climate change. It provides policymakers with regular assessments of the scientific basis of human-induced climate change, its impacts and future risks, and options for adaptation and mitigation. This IPCC Special Report on the Ocean and Cryosphere in a Changing Climate is the most comprehensive and up-to-date assessment of the observed and projected changes to the ocean and cryosphere and their associated impacts and risks, with a focus on resilience, risk management response options, and adaptation measures, considering both their potential and limitations. It brings together knowledge on physical and biogeochemical changes, the interplay with ecosystem changes, and the implications for human communities. It serves policymakers, decision makers, stakeholders, and all interested parties with unbiased, up-to-date, policy-relevant information. This title is also available as Open Access on Cambridge Core.
The sea ice surrounding Antarctica has increased in extent and concentration from the late 1970s, when satellite-based measurements began, until 2015. Although this increasing trend is modest, it is surprising given the overall warming of the global climate and the region. Indeed, climate models, which incorporate our best understanding of the processes affecting the region, generally simulate a decrease in sea ice. Moreover, sea ice in the Arctic has exhibited pronounced declines over the same period, consistent with global climate model simulations. For these reasons, the behavior of Antarctic sea ice has presented a conundrum for global climate change science. The National Academies of Sciences, Engineering, and Medicine held a workshop in January 2016, to bring together scientists with different sets of expertise and perspectives to further explore potential mechanisms driving the evolution of recent Antarctic sea ice variability and to discuss ways to advance understanding of Antarctic sea ice and its relationship to the broader ocean-climate system. This publication summarizes the presentations and discussions from the workshop.