Download Free Anomaly Detection As A Service Book in PDF and EPUB Free Download. You can read online Anomaly Detection As A Service and write the review.

Anomaly detection has been a long-standing security approach with versatile applications, ranging from securing server programs in critical environments, to detecting insider threats in enterprises, to anti-abuse detection for online social networks. Despite the seemingly diverse application domains, anomaly detection solutions share similar technical challenges, such as how to accurately recognize various normal patterns, how to reduce false alarms, how to adapt to concept drifts, and how to minimize performance impact. They also share similar detection approaches and evaluation methods, such as feature extraction, dimension reduction, and experimental evaluation. The main purpose of this book is to help advance the real-world adoption and deployment anomaly detection technologies, by systematizing the body of existing knowledge on anomaly detection. This book is focused on data-driven anomaly detection for software, systems, and networks against advanced exploits and attacks, but also touches on a number of applications, including fraud detection and insider threats. We explain the key technical components in anomaly detection workflows, give in-depth description of the state-of-the-art data-driven anomaly-based security solutions, and more importantly, point out promising new research directions. This book emphasizes on the need and challenges for deploying service-oriented anomaly detection in practice, where clients can outsource the detection to dedicated security providers and enjoy the protection without tending to the intricate details.
With the rapid rise in the ubiquity and sophistication of Internet technology and the accompanying growth in the number of network attacks, network intrusion detection has become increasingly important. Anomaly-based network intrusion detection refers to finding exceptional or nonconforming patterns in network traffic data compared to normal behavi
This indispensable text/reference presents a comprehensive overview on the detection and prevention of anomalies in computer network traffic, from coverage of the fundamental theoretical concepts to in-depth analysis of systems and methods. Readers will benefit from invaluable practical guidance on how to design an intrusion detection technique and incorporate it into a system, as well as on how to analyze and correlate alerts without prior information. Topics and features: introduces the essentials of traffic management in high speed networks, detailing types of anomalies, network vulnerabilities, and a taxonomy of network attacks; describes a systematic approach to generating large network intrusion datasets, and reviews existing synthetic, benchmark, and real-life datasets; provides a detailed study of network anomaly detection techniques and systems under six different categories: statistical, classification, knowledge-base, cluster and outlier detection, soft computing, and combination learners; examines alert management and anomaly prevention techniques, including alert preprocessing, alert correlation, and alert post-processing; presents a hands-on approach to developing network traffic monitoring and analysis tools, together with a survey of existing tools; discusses various evaluation criteria and metrics, covering issues of accuracy, performance, completeness, timeliness, reliability, and quality; reviews open issues and challenges in network traffic anomaly detection and prevention. This informative work is ideal for graduate and advanced undergraduate students interested in network security and privacy, intrusion detection systems, and data mining in security. Researchers and practitioners specializing in network security will also find the book to be a useful reference.
The two-volume set LNCS 6640 and 6641 constitutes the refereed proceedings of the 10th International IFIP TC 6 Networking Conference held in Valencia, Spain, in May 2011. The 64 revised full papers presented were carefully reviewed and selected from a total of 294 submissions. The papers feature innovative research in the areas of applications and services, next generation Internet, wireless and sensor networks, and network science. The first volume includes 36 papers and is organized in topical sections on anomaly detection, content management, DTN and sensor networks, energy efficiency, mobility modeling, network science, network topology configuration, next generation Internet, and path diversity.
Finding Data Anomalies You Didn't Know to Look For Anomaly detection is the detective work of machine learning: finding the unusual, catching the fraud, discovering strange activity in large and complex datasets. But, unlike Sherlock Holmes, you may not know what the puzzle is, much less what “suspects” you’re looking for. This O’Reilly report uses practical examples to explain how the underlying concepts of anomaly detection work. From banking security to natural sciences, medicine, and marketing, anomaly detection has many useful applications in this age of big data. And the search for anomalies will intensify once the Internet of Things spawns even more new types of data. The concepts described in this report will help you tackle anomaly detection in your own project. Use probabilistic models to predict what’s normal and contrast that to what you observe Set an adaptive threshold to determine which data falls outside of the normal range, using the t-digest algorithm Establish normal fluctuations in complex systems and signals (such as an EKG) with a more adaptive probablistic model Use historical data to discover anomalies in sporadic event streams, such as web traffic Learn how to use deviations in expected behavior to trigger fraud alerts
Streamline your complex processes and optimize your organization's operational efficiency, cost-effectiveness, and customer experience by unlocking the potential of Microsoft Azure Cognitive Services and OpenAI Purchase of the print or Kindle book includes a free PDF eBook Key Features Minimize costs and maximize operations by automating mundane activities using AI tools Ideate solutions using real-world examples for manufacturing process improvement with AI Master TCO and ROI analysis for implementing AI solutions, automating operations, and ideating innovative manufacturing solutions with real-world examples Book Description Azure Cognitive Services and OpenAI are a set of pre-built artificial intelligence (AI) solution APIs that can be leveraged from existing applications, allowing customers to take advantage of Microsoft's award-winning Vision, Speech, Text, Decision, and GPT-4 AI capabilities. With Practical Guide to Azure Cognitive Services, you'll work through industry-specific examples of implementations to get a head-start in your production journey. You'll begin with an overview of the categorization of Azure Cognitive Services and the benefits of embracing AI solutions for practical business applications. After that, you'll explore the benefits of using Azure Cognitive Services to optimize efficiency and improve predictive capabilities. Then, you'll learn how to leverage Vision capabilities for quality control, Form Recognizer to streamline supply chain nuances, language understanding to improve customer service, and Cognitive Search for next-generation knowledge-mining solutions. By the end of this book, you'll be able to implement various Cognitive Services solutions that will help you enhance efficiency, reduce costs, and improve the customer experience at your organization. You'll also be well equipped to automate mundane tasks by reaping the full potential of OpenAI. What you will learn Master cost-effective deployment of Azure Cognitive Services Develop proven solutions from an architecture and development standpoint Understand how Cognitive Services are deployed and customized Evaluate various uses of Cognitive Services with different mediums Disseminate Azure costs for Cognitive Services workloads smoothly Deploy next-generation Knowledge Mining solutions with Cognitive Search Explore the current and future journey of OpenAI Understand the value proposition of different AI projects Who this book is for This book is for data scientists, technology leaders, and software engineers looking to implement Azure Cognitive Services with the help of sample use cases derived from success stories. Experience with Python as well as an overall understanding of the Azure Portal with related services such as Azure Data Lake Storage and Azure Functions will help you make the most of this book.
This book constitutes the proceedings of the 20th International Conference on Service-Oriented Computing, ICSOC 2022, held in Seville, Spain, in November -December 2022. The 29 full, 15 short, and 4 vision papers included in this volume were carefully reviewed and selected from 221 submissions. They were organized in topical sections named: ​service modeling and mining; quality of service; microservices; service personalization, recommendation, and crowdsourcing; blockchain; IoT and green computing; services for cloud, edge, and fog computing; artificial intelligence and machine learning for service computing; vision papers.
The collaborative nature of industrial wireless sensor networks (IWSNs) brings several advantages over traditional wired industrial monitoring and control systems, including self-organization, rapid deployment, flexibility, and inherent intelligent processing. In this regard, IWSNs play a vital role in creating more reliable, efficient, and productive industrial systems, thus improving companies’ competitiveness in the marketplace. Industrial Wireless Sensor Networks: Applications, Protocols, and Standards examines the current state of the art in industrial wireless sensor networks and outlines future directions for research. What Are the Main Challenges in Developing IWSN Systems? Featuring contributions by researchers around the world, this book explores the software and hardware platforms, protocols, and standards that are needed to address the unique challenges posed by IWSN systems. It offers an in-depth review of emerging and already deployed IWSN applications and technologies, and outlines technical issues and design objectives. In particular, the book covers radio technologies, energy harvesting techniques, and network and resource management. It also discusses issues critical to industrial applications, such as latency, fault tolerance, synchronization, real-time constraints, network security, and cross-layer design. A chapter on standards highlights the need for specific wireless communication standards for industrial applications. A Starting Point for Further Research Delving into wireless sensor networks from an industrial perspective, this comprehensive work provides readers with a better understanding of the potential advantages and research challenges of IWSN applications. A contemporary reference for anyone working at the cutting edge of industrial automation, communication systems, and networks, it will inspire further exploration in this promising research area.
This book constitutes the selected papers from the scientific satellite events held in conjunction with the19th International Conference on Service-Oriented Computing, ICSOC 2021. The conference was held Dubai, United Arab Emirates in November 2021. This year, these satellite events were organized around three main tracks, including a workshop track, a demonstration track, and a tutorials track. The ICSOC 2021 workshop track consisted of the following three workshops covering a wide range of topics that fall into the general area of service computing. • International Workshop on Artificial Intelligence for IT Operations (AIOps) • 3rd Workshop on Smart Data Integration and Processing (STRAPS 2021) • International Workshop on AI-enabled Process Automation (AI-PA 2021)
This book presents advanced software development tools for construction, deployment and governance of Service Oriented Architecture (SOA) applications. Novel technical concepts and paradigms, formulated during the research stage and during development of such tools are presented and illustrated by practical usage examples. Hence this book will be of interest not only to theoreticians but also to engineers who cope with real-life problems. Additionally, each chapter contains an overview of related work, enabling comparison of the proposed concepts with exiting solutions in various areas of the SOA development process. This makes the book interesting also for students and scientists who investigate similar issues.