Download Free Annotated Bibliographies In Combinatorial Optimization Book in PDF and EPUB Free Download. You can read online Annotated Bibliographies In Combinatorial Optimization and write the review.

Wiley-Interscience Series in Discrete Mathematics and Optimization Advisory Editors Ronald L. Graham Jan Karel Lenstra Robert E. Tarjan Discrete Mathematics and Optimization involves the study of finite structures and is one of the fastest growing areas in mathematics today. The level and depth of recent advances in the area and the wide applicability of its evolving techniques point to the rapidity with which the field is moving and presage the ever-increasing interaction between it and computer science. The Series provides a broad coverage of discrete mathematics and optimization, ranging over such fields as combinatorics, graph theory, enumeration, mathematical programming and the analysis of algorithms, and including such topics as Ramsey theory, transversal theory, block designs, finite geometries, Polya theory, graph and matroid algorithms, network flows, polyhedral combinatorics and computational complexity. The Wiley-Interscience Series in Discrete Mathematics and Optimization will be a substantial part of the record in this extraordinary development. Recent titles in the Series: Local Search in Combinatorial Optimization Edited by Emile H. L. Aarts Philips Research Laboratories, Eindhoven and Eindhoven University of Technology, Eindhoven Jan Karel Lenstra Eindhoven University of Technology, Eindhoven and CWI Amsterdam In the past three decades local search has grown from a simple heuristic idea into a mature field of research in combinatorial optimization. Local search is still the method of choice for NP-hard problems as it provides a robust approach for obtaining high-quality solutions to problems of a realistic size in a reasonable time. This area of discrete mathematics is of great practical use and is attracting ever-increasing attention. The contributions to this book cover local search and its variants from both a theoretical and practical point of view, each with a chapter written by leading authorities on that particular aspect. Chapters 1 to 7 deal with the theory of local search and describe the principal search strategies such as simulated annealing, tabu search, genetic algorithms and neural networks. The remaining chapters present a wealth of results on applications of local search to problems in management science and engineering, including the traveling salesman problem, vehicle routing, machine scheduling, VLSI design and code design. This book is an important reference volume and an invaluable source of inspiration for advanced students and researchers in discrete mathematics, computer science, operations research, industrial engineering and management science.
​​​​​​​​​​​​​​​​​Data Correcting Approaches in Combinatorial Optimization focuses on algorithmic applications of the well known polynomially solvable special cases of computationally intractable problems. The purpose of this text is to design practically efficient algorithms for solving wide classes of combinatorial optimization problems. Researches, students and engineers will benefit from new bounds and branching rules in development efficient branch-and-bound type computational algorithms. This book examines applications for solving the Traveling Salesman Problem and its variations, Maximum Weight Independent Set Problem, Different Classes of Allocation and Cluster Analysis as well as some classes of Scheduling Problems. Data Correcting Algorithms in Combinatorial Optimization introduces the data correcting approach to algorithms which provide an answer to the following questions: how to construct a bound to the original intractable problem and find which element of the corrected instance one should branch such that the total size of search tree will be minimized. The PC time needed for solving intractable problems will be adjusted with the requirements for solving real world problems.​
Combinatorial optimization is a multidisciplinary scientific area, lying in the interface of three major scientific domains: mathematics, theoretical computer science and management. The three volumes of the Combinatorial Optimization series aims to cover a wide range of topics in this area. These topics also deal with fundamental notions and approaches as with several classical applications of combinatorial optimization. Concepts of Combinatorial Optimization, is divided into three parts: On the complexity of combinatorial optimization problems, that presents basics about worst-case and randomized complexity; Classical solution methods, that presents the two most-known methods for solving hard combinatorial optimization problems, that are Branch-and-Bound and Dynamic Programming; Elements from mathematical programming, that presents fundamentals from mathematical programming based methods that are in the heart of Operations Research since the origins of this field.
Combinatorial optimization is a multidisciplinary scientific area, lying in the interface of three major scientific domains: mathematics, theoretical computer science and management. The three volumes of the Combinatorial Optimization series aim to cover a wide range of topics in this area. These topics also deal with fundamental notions and approaches as with several classical applications of combinatorial optimization. Concepts of Combinatorial Optimization, is divided into three parts: - On the complexity of combinatorial optimization problems, presenting basics about worst-case and randomized complexity; - Classical solution methods, presenting the two most-known methods for solving hard combinatorial optimization problems, that are Branch-and-Bound and Dynamic Programming; - Elements from mathematical programming, presenting fundamentals from mathematical programming based methods that are in the heart of Operations Research since the origins of this field.
Finding exact solutions to many combinatorial optimization problems in busi ness, engineering, and science still poses a real challenge, despite the impact of recent advances in mathematical programming and computer technology. New fields of applications, such as computational biology, electronic commerce, and supply chain management, bring new challenges and needs for algorithms and optimization techniques. Metaheuristics are master procedures that guide and modify the operations of subordinate heuristics, to produce improved approx imate solutions to hard optimization problems with respect to more simple algorithms. They also provide fast and robust tools, producing high-quality solutions in reasonable computation times. The field of metaheuristics has been fast evolving in recent years. Tech niques such as simulated annealing, tabu search, genetic algorithms, scatter search, greedy randomized adaptive search, variable neighborhood search, ant systems, and their hybrids are currently among the most efficient and robust optimization strategies to find high-quality solutions to many real-life optimiza tion problems. A very large nmnber of successful applications of metaheuristics are reported in the literature and spread throughout many books, journals, and conference proceedings. A series of international conferences entirely devoted to the theory, applications, and computational developments in metaheuristics has been attracting an increasing number of participants, from universities and the industry.
This monograph provides an introduction to the state of the art of the probability theory that is most directly applicable to combinatorial optimization. The questions that receive the most attention are those that deal with discrete optimization problems for points in Euclidean space, such as the minimum spanning tree, the traveling-salesman tour, and minimal-length matchings. Still, there are several nongeometric optimization problems that receive full treatment, and these include the problems of the longest common subsequence and the longest increasing subsequence. The philosophy that guides the exposition is that analysis of concrete problems is the most effective way to explain even the most general methods or abstract principles. There are three fundamental probabilistic themes that are examined through our concrete investigations. First, there is a systematic exploitation of martingales. The second theme that is explored is the systematic use of subadditivity of several flavors, ranging from the naïve subadditivity of real sequences to the subtler subadditivity of stochastic processes. The third and deepest theme developed here concerns the application of Talagrand's isoperimetric theory of concentration inequalities.
This is the first book to cover GRASP (Greedy Randomized Adaptive Search Procedures), a metaheuristic that has enjoyed wide success in practice with a broad range of applications to real-world combinatorial optimization problems. The state-of-the-art coverage and carefully crafted pedagogical style lends this book highly accessible as an introductory text not only to GRASP, but also to combinatorial optimization, greedy algorithms, local search, and path-relinking, as well as to heuristics and metaheuristics, in general. The focus is on algorithmic and computational aspects of applied optimization with GRASP with emphasis given to the end-user, providing sufficient information on the broad spectrum of advances in applied optimization with GRASP. For the more advanced reader, chapters on hybridization with path-relinking and parallel and continuous GRASP present these topics in a clear and concise fashion. Additionally, the book offers a very complete annotated bibliography of GRASP and combinatorial optimization. For the practitioner who needs to solve combinatorial optimization problems, the book provides a chapter with four case studies and implementable templates for all algorithms covered in the text. This book, with its excellent overview of GRASP, will appeal to researchers and practitioners of combinatorial optimization who have a need to find optimal or near optimal solutions to hard combinatorial optimization problems.
From the reviews: "About 30 years ago, when I was a student, the first book on combinatorial optimization came out referred to as "the Lawler" simply. I think that now, with this volume Springer has landed a coup: "The Schrijver". The box is offered for less than 90.- EURO, which to my opinion is one of the best deals after the introduction of this currency." OR-Spectrum
A collection of papers surveying recent progress in the field of Combinatorial Optimization.Topics examined include theoretical and computational aspects (Boolean Programming, Probabilistic Analysis of Algorithms, Parallel Computer Models and Combinatorial Algorithms), well-known combinatorial problems (such as the Linear Assignment Problem, the Quadratic Assignment Problem, the Knapsack Problem and Steiner Problems in Graphs) and more applied problems (such as Network Synthesis and Dynamic Network Optimization, Single Facility Location Problems on Networks, the Vehicle Routing Problem and Scheduling Problems).
1. Introduction -- 2. Computational complexity -- 3. Local improvement on discrete structures -- 4. Simulated annealing -- 5. Tabu search -- 6. Genetic algorithms -- 7. Artificial neural networks -- 8. The traveling salesman problem: A case study -- 9. Vehicle routing: Modern heuristics -- 10. Vehicle routing: Handling edge exchanges -- 11. Machine scheduling -- 12. VLSI layout synthesis -- 13. Code design.