Download Free Anisotropic Particles For Colloidal Self Assembly Book in PDF and EPUB Free Download. You can read online Anisotropic Particles For Colloidal Self Assembly and write the review.

Anisotropic Particle Assemblies: Synthesis, Assembly, Modeling, and Applications covers the synthesis, assembly, modeling, and applications of various types of anisotropic particles. Topics such as chemical synthesis and scalable fabrication of colloidal molecules, molecular mimetic self-assembly, directed assembly under external fields, theoretical and numerical multi-scale modeling, anisotropic materials with novel interfacial properties, and the applications of these topics in renewable energy, intelligent micro-machines, and biomedical fields are discussed in depth. Contributors to this book are internationally known experts who have been actively studying each of these subfields for many years.This book is an invaluable reference for researchers and chemical engineers who are working at the intersection of physics, chemistry, chemical engineering, and materials science and engineering. It educates students, trains the next generation of researchers, and stimulates continuous development in this rapidly emerging area for new materials and innovative technologies. - Provides comprehensive coverage on new developments in anisotropic particles - Features chapters written by emerging and leading experts in each of the subfields - Contains information that will appeal to a broad spectrum of professionals, including but not limited to chemical engineers, chemists, physicists, and materials scientists and engineers - Serves as both a reference book for researchers and a textbook for graduate students
In this book anisotropic one-dimensional and two-dimensional nanoscale building blocks and their assembly into fascinating and qualitatively new functional structures embracing both hard and soft components are explained. Contributions from leading experts regarding important aspects like synthesis, assembly, properties and applications of the above materials are compiled into a reference book. The anisotropy, i.e. the direction-dependent physical properties, of materials is fascinating and elegant and has sparked the quest for anisotropic materials with useful properties. With such a curiosity, material scientists have ventured into the realm of nanometer length scale and have explored the anisotropic nanoscale building blocks such as metallic and nonmetallic particles as well as organic molecular aggregates. It turns out that the anisotropic nanoscale building blocks, in addition to direction-dependent properties, exhibit dimension and morphology dependence of physical properties. Moreover, ordered arrays of anisotropic nanoscale building blocks furnish novel properties into the resulting system which would be entirely different from the properties of individual ones. Undoubtedly, these promising properties have qualified them as enabling building blocks of 21st century materials science, nanoscience and nanotechnology. Readers will find this book professionally valuable and intellectually stimulating in the rapidly emerging area of anisotropic nanomaterials. Quan Li, Ph.D., is Director of the Organic Synthesis and Advanced Materials Laboratory at the Liquid Crystal Institute of Kent State University, where he is also Adjunct Professor in the Chemical Physics Interdisciplinary Program. He has directed research projects funded by US Air Force Research Laboratory (AFRL), US Air Force Office of Scientific Research (AFSOR), US Army Research Office (ARO), US Department of Defense Multidisciplinary University Research Initiative (DoD MURI), US National Science Foundation (NSF), US Department of Energy (DOE), US National Aeronautics and Space Administration (NASA), Ohio Third Frontier, and Samsung Electronics, among others.
The understanding of how small solid particles operate at liquid interfaces is minimal. This book brings together the topics actively being investigated, with contributions from experts in the field. It will be of interest to researchers in chemistry, physics, chemical engineering, pharmacy, food science and materials science.
Top-down approaches are currently the main contributor of fabricating microelectronic devices. However, the prohibitive cost of numerous technological steps in these approaches is the main obstacle to further progress. Furthermore, a large number of applications necessitate fabrication of complex and ultra-small devices that cannot be made using these approaches. New approaches based on natural self-assembly of matter need to be developed to allow for fabrication of micro and nanoelectronic devices. Self-assembly of nanostructures is a dynamic field, which explores physics of these structures and new ways to fabricate them. However, the major problem is how to control the properties of the nanostructures resulting from low dimensionality. This book presents recent advances made to address this problem, and fabricate nanostructures using self-assembly.
A comprehensive resource for new and veteran researchers in the field of self-assembling and functional materials In Functional Materials from Colloidal Self-assembly, a pair of distinguished researchers delivers a thorough overview of how the colloidal self-assembly approach can enable the design and fabrication of several functional materials and devices. Among other topics, the book explores the foundations of self-assembly in different systems, nucleation, the growth of nanoparticles, self-assembly of colloidal microspheres for photonic crystals and devices, and the self-assembly of amphiphilic molecules as a template for mesoporous materials. The authors also discuss the self-assembly of biomolecules, superstructures from self-assembly, architectures from self-assembly, and the applications of self-assembled nanostructures. Functional Materials from Colloidal Self-assembly provides a balanced approach to the theoretical background and applications of the subject, offering sound guidance to both experienced and early-career researchers. The book also delivers: A thorough introduction to the fundamentals of colloids, including the theory of nucleation and the growth of colloidal particles Comprehensive explorations of mechanisms and strategies for the self-assembly of colloidal particles, including DNA-mediated colloidal self-assembly Practical discussions of characterization techniques for self-assembled colloidal structures, including electron microscopy techniques and X-ray techniques In-depth examinations of biological and biomedical materials, including tissue engineering, drug loading and release, and biodetection Perfect for materials scientists, inorganic chemists, and catalytic chemists, Functional Materials from Colloidal Self-assembly is also a must-read reference for biochemists and surface chemists seeking a one-stop resource on self-assembling and functional materials.
This book brings together the many concepts and discoveries in liquid crystal colloids contributed over the last twenty years and scattered across numerous articles and book chapters. It provides both a historical overview of the development of the field and a clear perspective on the future applications in photonics. The book covers all phenomena observed in liquid crystal colloids with an emphasis on experimental tools and applications of topology in condensed matter, as well as practical micro-photonics applications. It includes a number of spectacular manifestations of new topological phenomena not found or difficult to observe in other systems. Starting from the early works on nematic colloids, it explains the basics of topological defects in ordered media, charge and winding, and the elastic forces between colloidal particles in nematics. Following a detailed description of experimental methods, such as optical tweezing and particle tracking, the book eases the reader into the theoretical part, which deals with elastic deformation of nematic liquid crystals due to inclusions and surface alignment. This is discussed in the context of basic mean field Landau-de Gennes Q-tensor theory, with a brief explanation of the free-energy minimization numerical methods. There then follows an excursion into the topology of complex nematic colloidal structures, colloidal entanglement, knotting and linking. Nematic droplets, shells, handlebodies and chiral topological structures are addressed in separate chapters. The book concludes with an extensive chapter on the photonic properties of nematic dispersions, presenting the concept of integrated soft matter photonics and discussing the concepts of nematic and chiral nematic microlasers, surface-sensitive photonic devices and smectic microfibers. The text is complemented by a large bibliography, explanatory sketches and beautiful micrographs.
Captures the most up-to-date research in the field, written in an accessible style by the world's leading experts.
Academic and industrial research around polymer-based colloids is huge. Edited by two world-renowned leaders in polymer science and engineering, this is a fundamental text for the field.
This open access book, published in the Soft and Biological Matter series, presents an introduction to selected research topics in the broad field of flowing matter, including the dynamics of fluids with a complex internal structure -from nematic fluids to soft glasses- as well as active matter and turbulent phenomena. Flowing matter is a subject at the crossroads between physics, mathematics, chemistry, engineering, biology and earth sciences, and relies on a multidisciplinary approach to describe the emergence of the macroscopic behaviours in a system from the coordinated dynamics of its microscopic constituents. Depending on the microscopic interactions, an assembly of molecules or of mesoscopic particles can flow like a simple Newtonian fluid, deform elastically like a solid or behave in a complex manner. When the internal constituents are active, as for biological entities, one generally observes complex large-scale collective motions. Phenomenology is further complicated by the invariable tendency of fluids to display chaos at the large scales or when stirred strongly enough. This volume presents several research topics that address these phenomena encompassing the traditional micro-, meso-, and macro-scales descriptions, and contributes to our understanding of the fundamentals of flowing matter. This book is the legacy of the COST Action MP1305 “Flowing Matter”.