Download Free Anisotropic Doubly Curved Shells Book in PDF and EPUB Free Download. You can read online Anisotropic Doubly Curved Shells and write the review.

This book aims to present in depth several Higher-order Shear Deformation Theories (HSDTs) by means of a unified approach for the mechanical analysis of doubly-curved shell structures made of anisotropic and composite materials. In particular, the strong and weak formulations of the corresponding governing equations are discussed and illustrated. The approach presented in this volume is completely general and represents a valid tool to investigate the structural behavior of many arbitrarily shaped structures. An isogeometric mapping procedure is also illustrated to this aim. Special attention is given also to advanced and innovative constituents, such as Carbon Nanotubes (CNTs), Variable Angle Tow (VAT) composites and Functionally Graded Materials (FGMs). In addition, several numerical applications are developed to support the theoretical models. Accurate, efficient and reliable numerical techniques able to approximate both derivatives and integrals are presented, which are respectively the Differential Quadrature (DQ) and Integral Quadrature (IQ) methods. Finally, two numerical techniques, named Strong Formulation Finite Element Method (SFEM) and Weak Formulation Finite Element Method (WFEM), are developed to deal with multi-element domains characterized by arbitrary shapes and discontinuities.
This book aims to present in depth several Higher-order Shear Deformation Theories (HSDTs) by means of a unified approach for studying the Hygro-Thermo-Magneto-Electro- Elastic Theory of Anisotropic Doubly-Curved Shells. In particular, a general coupled multifield theory regarding anisotropic shell structures is provided. The three-dimensional multifield problem is reduced in a two-dimensional one following the principles of the Equivalent Single Layer (ESL) approach and the Equivalent Layer-Wise (ELW) approach, setting a proper configuration model. According to the adopted configuration assumptions, several Higher-order Shear Deformation Theories (HSDTs) are obtained. Furthermore, the strong and weak formulations of the corresponding governing equations are discussed and illustrated. The approach presented in this volume is completely general and represents a valid tool to investigate the physical behavior of many arbitrarily shaped structures. An isogeometric mapping procedure is also illustrated to this aim. Special attention is given also to advanced and innovative constituents, such as Carbon Nanotubes (CNTs), Variable Angle Tow (VAT) composites and Functionally Graded Materials (FGMs). In addition, several numerical applications are used to support the theoretical models. Accurate, efficient and reliable numerical techniques able to approximate both derivatives and integrals are considered, which are respectively the Differential Quadrature (DQ) and Integral Quadrature (IQ) methods. The Theory of Composite Thin Shells is derived in a simple and intuitive manner from the theory of thick and moderately thick shells (First-order Shear Deformation Theory or Reissner- Mindlin Theory). In particular, the Kirchhoff-Love Theory and the Membrane Theory for composite shells are shown. Furthermore, the Theory of Composite Arches and Beams is also exposed. In particular, the equations of the Timoshenko Theory and the Euler-Bernoulli Theory are directly deducted from the equations of singly-curved shells of translation and of plates.
The title, “Laminated Composite Doubly-Curved Shell Structures. Differential al Geometry and Higher-order Theories” illustrates the theme treated and the prospective followed during the composition of the present work. The aim of this manuscript is to analyze the static and dynamic behavior of thick and moderately thick composite shells through the application of the Differential Quadrature (DQ) method. The book is divided into two volumes wherein the principal higher order structural theories are illustrated in detail and the mechanical behavior of doubly-curved structures are presented by several static and dynamic numerical applications. In particular, the first volume is mainly theoretical, whereas the second one is mainly related to the numerical DQ technique and its applications in the structural field. The starting point to analyze higher-order structural theories is given by the so-called Unified Formulation (UF), which allows to consider and study several kinematic models in a unified manner. Both the Equivalent Single Layer (ESL) and Layer-Wise (LW) approaches are presented. A particular attention is paid to composite materials, due to their increasing development and use in many engineering fields during the last years.
This manuscript comes from the experience gained over thirteen years of study and research on shell structures. The title, Theory of Laminated Composite Doubly-Curved Shell Structures, illustrates the theme followed in the present volume. The present study aims to analyze the static and dynamic behavior of moderately thick shells made of composite materials. A particular attention is paid, other than fibrous and laminated composites, also to “Functionally graded materials” (FGMs). They are non-homogeneous materials, characterized by a continuous varia on of the mechanical properties through a particular direction. In particular, the present manuscript was written as an attempt to show, in an easy way, the theoretical aspects of doubly-curved composite shell structures. Furthermore, it focuses only on the theoretical aspects related to laminated composite doubly-curved shell structures and represents a shortened version of the book entitled: Mechanics of Laminated Composite Doubly-Curved Shell Structures by the same authors, wherein also the numerical part has been presented. The present volume is aimed at Master degree and PhD students in structural and applied mechanics, as well as experts in these fields. The present volume is divided into six chapters, in which static and dynamic analyses of several structural elements are provided in detail. Furthermore, the results of the adopted numerical technique are presented for several problems such as different loading and boundary conditions.
Vibrations drive many engineering designs in today's engineering environment. There has been an enormous amount of research into this area of research over the last decade. This book documents some of the latest research in the field of vibration of composite shells and plates filling a much-needed gap in the market. Laminated composite shells have many engineering applications including aerospace, mechanical, marine and automotive engineering. This book makes an ideal reference for researchers and practicing engineers alike. - The first book of its kind - Documents 10 years of research in the field of composite shells - Many Engineering applications
A comprehensive guide to using energy principles and variational methods for solving problems in solid mechanics This book provides a systematic, highly practical introduction to the use of energy principles, traditional variational methods, and the finite element method for the solution of engineering problems involving bars, beams, torsion, plane elasticity, trusses, and plates. It begins with a review of the basic equations of mechanics, the concepts of work and energy, and key topics from variational calculus. It presents virtual work and energy principles, energy methods of solid and structural mechanics, Hamilton’s principle for dynamical systems, and classical variational methods of approximation. And it takes a more unified approach than that found in most solid mechanics books, to introduce the finite element method. Featuring more than 200 illustrations and tables, this Third Edition has been extensively reorganized and contains much new material, including a new chapter devoted to the latest developments in functionally graded beams and plates. Offers clear and easy-to-follow descriptions of the concepts of work, energy, energy principles and variational methods Covers energy principles of solid and structural mechanics, traditional variational methods, the least-squares variational method, and the finite element, along with applications for each Provides an abundance of examples, in a problem-solving format, with descriptions of applications for equations derived in obtaining solutions to engineering structures Features end-of-the-chapter problems for course assignments, a Companion Website with a Solutions Manual, Instructor's Manual, figures, and more Energy Principles and Variational Methods in Applied Mechanics, Third Edition is both a superb text/reference for engineering students in aerospace, civil, mechanical, and applied mechanics, and a valuable working resource for engineers in design and analysis in the aircraft, automobile, civil engineering, and shipbuilding industries.
This manuscript comes from the experience gained over ten years of study and research on shell structures and on the Generalized Differential Quadrature method. The title, Mechanics of Laminated Composite Doubly-Curved Shell Structures, illustrates the theme followed in the present volume. The present study aims to analyze the static and dynamic behavior of moderately thick shells made of composite materials through the application of the Differential Quadrature (DQ) technique. A particular attention is paid, other than fibrous and laminated composites, also to “Functionally Graded Materials” (FGMs). They are non-homogeneous materials, characterized by a continuous variation of the mechanical properties through a particular direction. The GDQ numerical solution is compared, not only with literature results, but also with the ones supplied and obtained through the use of different structural codes based on the Finite Element Method (FEM). Furthermore, an advanced version of GDQ method is also presented. This methodology is termed Strong Formulation Finite Element Method (SFEM) because it employs the strong form of the differential system of equations at the master element level and the mapping technique, proper of FEM. The connectivity between two elements is enforced through compatibility conditions.
A new method of modeling the atmosphere, synthesizing data analysis techniques and multifractal statistics, for atmospheric researchers and graduate students.
This volume collects the latest advances, innovations, and applications in the field of shell and spatial structures, as presented by leading international researchers at the 2nd Italian Workshop on Shell and Spatial Structures (IWSS), held in Turin, Italy on June 26-28, 2023. The conference was meant to give an overview on experimental and theoretical studies, analysis methods and approaches for the design, computational form finding, structural optimization, manufacturing, testing and maintenance techniques and historical reviews of all types of shell and spatial structures. These include, but are not limited to, tension and membrane structures, framed and lattice structures, gridshells and active-bending structures, shell roofs, tensegrity structures, pneumatic and inflatable structures, active and deployable structures, concrete, metal, masonry, timber and bio-based, spatial structures. The contributions, which were selected by means of a rigorous international peer-review process, present a wealth of exciting ideas that will open novel research directions and foster multidisciplinary collaboration among different specialists.