Download Free Animal Models In Experimental Medicine Book in PDF and EPUB Free Download. You can read online Animal Models In Experimental Medicine and write the review.

Scientific experiments using animals have contributed significantly to the improvement of human health. Animal experiments were crucial to the conquest of polio, for example, and they will undoubtedly be one of the keystones in AIDS research. However, some persons believe that the cost to the animals is often high. Authored by a committee of experts from various fields, this book discusses the benefits that have resulted from animal research, the scope of animal research today, the concerns of advocates of animal welfare, and the prospects for finding alternatives to animal use. The authors conclude with specific recommendations for more consistent government action.
The collection of systems represented in Sourcebook of genomic programs, although this work is certainly well Models for Biomedical Research is an effort to re?ect the represented and indexed. diversity and utility of models that are used in biomedicine. Some models have been omitted due to page limitations That utility is based on the consideration that observations and we have encouraged the authors to use tables and made in particular organisms will provide insight into the ? gures to make comparisons of models so that observations workings of other, more complex, systems. Even the cell not available in primary publications can become useful to cycle in the simple yeast cell has similarities to that in the reader. humans and regulation with similar proteins occurs. We thank Richard Lansing and the staff at Humana for Some models have the advantage that the reproductive, guidance through the publication process. mitotic, development or aging cycles are rapid compared As this book was entering production, we learned of the with those in humans; others are utilized because individual loss of Tom Lanigan, Sr. Tom was a leader and innovator proteins may be studied in an advantageous way and that in scienti?c publishing and a good friend and colleague to have human homologs. Other organisms are facile to grow all in the exploratory enterprise. We dedicate this book to in laboratory settings or lend themselves to convenient analy- his memory. We will miss him greatly.
Nervous system diseases and disorders are highly prevalent and substantially contribute to the overall disease burden. Despite significant information provided by the use of animal models in the understanding of the biology of nervous system disorders and the development of therapeutics; limitations have also been identified. Treatment options that are high in efficacy and low in side effects are still lacking for many diseases and, in some cases are nonexistent. A particular problem in drug development is the high rate of attrition in Phase II and III clinical trials. Why do many therapeutics show promise in preclinical animal models but then fail to elicit predicted effects when tested in humans? On March 28 and 29, 2012, the Institute of Medicine Forum on Neuroscience and Nervous System Disorders convened the workshop "Improving Translation of Animal Models for Nervous System Disorders" to discuss potential opportunities for maximizing the translation of new therapies from animal models to clinical practice. The primary focus of the workshop was to examine mechanisms for increasing the efficiency of translational neuroscience research through discussions about how and when to use animal models most effectively and then best approaches for the interpretation of the data collected. Specifically, the workshop objectives were to: discuss key issues that contribute to poor translation of animal models in nervous system disorders, examine case studies that highlight successes and failures in the development and application of animal models, consider strategies to increase the scientific rigor of preclinical efficacy testing, explore the benefits and challenges to developing standardized animal and behavioral models. Improving the Utility and Translation of Animal Models for Nervous System Disorders: Workshop Summary also identifies methods to facilitate development of corresponding animal and clinical endpoints, indentifies methods that would maximize bidirectional translation between basic and clinical research and determines the next steps that will be critical for improvement of the development and testing of animal models of disorders of the nervous system.
The world has recorded losses in terms of human life as well as extensive time spent in experimentation with development of new drugs, elucidation of disease mechanism(s), and therapeutic agent discovery. Ethical and legal issues cojoin in slowing down scientific discoveries in medicine and biology. The past two (2) decades, therefore, have seen tremendous attempts that largely are successful in developing animal models with the characteristics of mimicking, approximating, or expressing transplanted human organs/tissues. These models or rather approaches seem to be fast, cost-effective, and easy to maintain compared to primates. This book is a collection of expert essays on animal models of human diseases of global interest. A visible objective of the book is to provide real-time experimental approach to scientists, clinicians, ethicists, medicolegal/medical jurisprudence workers, immunologists, postgraduate students, and vaccinologists and informative and multidisciplinary approach for the identification of new therapeutic targets and biomarkers using animal models as well as investigating the pathogenesis and therapeutic strategies of human diseases. An increased understanding of the genetic, molecular, and cellular mechanisms responsible for the development of human diseases has laid out the foundation for the development of rational therapies mainly with animal models.
Animal Models for the Study of Human Disease identifies important animal models and assesses the advantages and disadvantages of each model for the study of human disease. The first section addresses how to locate resources, animal alternatives, animal ethics and related issues, much needed information for researchers across the biological sciences and biomedicine.The next sections of the work offers models for disease-oriented topics, including cardiac and pulmonary diseases, aging, infectious diseases, obesity, diabetes, neurological diseases, joint diseases, visual disorders, cancer, hypertension, genetic diseases, and diseases of abuse. - Organized by disease orientation for ease of searchability - Provides information on locating resources, animal alternatives and animal ethics - Covers a broad range of animal models used in research for human disease
Animal Models in Cancer Drug Discovery brings forward the most cutting-edge developments in tumor model systems for translational cancer research. The reader can find under this one volume virtually all types of existing and emerging tumor models in use by the research community. This book provides a deeper insight on how these newer models could de-risk modern drug discovery. Areas covered include up to date information on latest organoid derived models and newer genetic models. Additionally, the book discusses humanized animal tumor models for cancer immunotherapy and how they leverage personalized therapies. The chapter on larger animal, canine models and their use in and their use in pre-investigational new drug (pre-IND) development makes the volume unique. Unlike before, the incorporation of several simplified protocols, breeding methodologies, handling and assessment procedures to study drug intervention makes this book a must read. Animal Models in Cancer Drug Discovery is a valuable resource for basic and translational cancer researchers, drug discovery researchers, contract research organizations, and knowledge seekers at all levels in the biomedical field.
A volume in the American College of Laboratory Animal Medicine series, this second edition has over 40% new material, including the addition of six new topics and many others that are completely rewritten. The book comprehensively covers the biological and disease aspects of laboratory animal medicine while examining other aspects such as the biohazards associated with the use of animal experimentation and factors complicating the bioethics of animal research.
The necessity for animal use in biomedical research is a hotly debated topic in classrooms throughout the country. Frequently teachers and students do not have access to balanced,  factual material to foster an informed discussion on the topic. This colorful, 50-page booklet is designed to educate teenagers about the role of animal research in combating disease, past and present; the perspective of animal use within the whole spectrum of biomedical research; the regulations and oversight that govern animal research; and the continuing efforts to use animals more efficiently and humanely.
Viral Pathogenesis: From Basics to Systems Biology, Third Edition, has been thoroughly updated to cover topical advances in the evolving field of viral pathogenesis, while also providing the requisite classic foundational information for which it is recognized. The book provides key coverage of the newfound ability to profile molecular events on a system-wide scale, which has led to a deeper understanding of virus-host interactions, host signaling and molecular-interaction networks, and the role of host genetics in determining disease outcome. In addition, the content has been augmented with short chapters on seminal breakthroughs and profiles of their progenitors, as well as short commentaries on important or controversial issues in the field. Thus, the reader will be given a view of virology research with perspectives on issues such as biomedical ethics, public health policy, and human health. In summary, the third edition will give the student a sense of the exciting new perspectives on viral pathogenesis that have been provided by recent developments in genomics, computation, modeling, and systems biology. - Covers all aspects of viral infection, including viral entry, replication, and release, as well as innate and adaptive immunity and viral pathogenesis - Provides a fresh perspective on the approaches used to understand how viruses cause disease - Features molecular profiling techniques, whole genome sequencing, and innovative computational methods - Highlights the use of contemporary approaches and the insights they provide to the field
Animals are widely used in neuroscience research to explore biological mechanisms of nervous system function, to identify the genetic basis of disease states, and to provide models of human disorders and diseases for the development of new treatments. To ensure the humane care and use of animals, numerous laws, policies, and regulations are in place governing the use of animals in research, and certain animal regulations have implications specific to neuroscience research. To consider animal research regulations from a global perspective, the IOM Forum on Neuroscience and Nervous System Disorders, in collaboration with the National Research Council and the Institute for Laboratory Animal Research, held a workshop in Buckinghamshire, UK, July 26-27, 2011. The workshop brought together neuroscientists, legal scholars, administrators, and other key stakeholders to discuss current and emerging trends in animal regulations as they apply to the neurosciences. This document summarizes the workshop.