Download Free Angiogenesis And The Clinical Implications Of Selected Angiogenesis Inhibitors Book in PDF and EPUB Free Download. You can read online Angiogenesis And The Clinical Implications Of Selected Angiogenesis Inhibitors and write the review.

Anti-angiogenesis Strategies in Cancer Therapeutics provides a detailed look at the current status and future directions in the discovery and development of novel anti-angiogenesis strategies in oncology. This book highlights the different mechanisms involved in the modulation of angiogenesis, including inflammation, thrombosis, and microRNA, and shows how nanotechnology can further enhance the potential of existing and new anti-angiogenesis approaches. Written for industry scientists, researchers, oncologists, hematologists, and professors and students in the field, this comprehensive book covers all aspects of anti-angiogenesis strategies and their differences. - Covers important preclinical models and clinical trials in the discovery and development of novel anti-angiogenesis agents - Reviews FDA-approved anti-angiogenesis agents - Illustrates the value of nanotechnology in improving the utility of anti-angiogenesis agents - Offers insight into the development of novel anti-angiogenesis agents and future direction in this area
Angiogenesis, the formation of new blood vessels, is fundamental for physiological processes such as embryonic and postnatal development, wound repair, and reproductive functions. Angiogenesis plays a major role in tumor growth and in several autoimmune and allergic disorders. Lymphangiogenesis, the formation of new lymphatic vessels, is also important for tumor growth, the formation of metastasis, and chronic inflammatory diseases. Judah Folkman, a pioneer in the study of angiogenesis, first proposed that macrophages and mast cells could be a relevant source of angiogenic factors. Since then, much effort has gone into the elucidation of the role of immune cells in the modulation of angiogenesis and lymphangiogenesis. There is now compelling evidence that several components of the innate and adaptive immune system are implicated in inflammatory and neoplastic angiogenesis and lymphangiogenesis. Articles in this volume deal with the emerging, intriguing possibility that immune cells are both a source and a target of angiogenic and lymphangiogenic factors. Therefore, cells of the immune system might play a role in inflammatory and neoplastic angiogenesis/lymphangiogenesis through the expression of several angiogenic factors and their receptors and co-receptors. The important new findings in this volume will be of special interest to vascular biologists, basic and clinical immunologists, oncologists and to specialists in allergic and immune disorders.
Angiogenesis, the development of new blood vessels from the existing vasculature, is essential for physiological growth and over 18,000 research articles have been published describing the role of angiogenesis in over 70 different diseases, including cancer, diabetic retinopathy, rheumatoid arthritis and psoriasis. One of the most important technical challenges in such studies has been finding suitable methods for assessing the effects of regulators of eh angiogenic response. While increasing numbers of angiogenesis assays are being described both in vitro and in vivo, it is often still necessary to use a combination of assays to identify the cellular and molecular events in angiogenesis and the full range of effects of a given test protein. Although the endothelial cell - its migration, proliferation, differentiation and structural rearrangement - is central to the angiogenic process, it is not the only cell type involved. the supporting cells, the extracellular matrix and the circulating blood with its cellular and humoral components also contribute. In this book, experts in the use of a diverse range of assays outline key components of these and give a critical appraisal of their strengths and weaknesses. Examples include assays for the proliferation, migration and differentiation of endothelial cells in vitro, vessel outgrowth from organ cultures, assessment of endothelial and mural cell interactions, and such in vivo assays as the chick chorioallantoic membrane, zebrafish, corneal, chamber and tumour angiogenesis models. These are followed by a critical analysis of the biological end-points currently being used in clinical trials to assess the clinical efficacy of anti-angiogenic drugs, which leads into a discussion of the direction future studies should take. This valuable book is of interest to research scientists currently working on angiogenesis in both the academic community and in the biotechnology and pharmaceutical industries. Relevant disciplines include cell and molecular biology, oncology, cardiovascular research, biotechnology, pharmacology, pathology and physiology.
Tumor angiogenesis is one of the most prominent mechanisms driving tumor development and progression. This book is written by internationally renowned experts. Part 1 describes the basic mechanisms. Tumor-angiogenic signaling pathways are presented as new potential targets for anti-angiogenic therapy. Part 2 reviews the efforts made to validate new targets and to show efficacy in animals. Part 3 is devoted to the clinical development of the novel anti-angiogenic drugs and their use in clinical practice.
Why a new book on angiogenesis and why now? For the first time concepts proposed over 30 years ago have found clinical validation. In the last two years the first antiangiogenic agents have been approved by the FDA for the treatment of cancer and age-related macular degeneration. Not surprisingly, this clinical success has raised a new set of basic
Tumor Vascularization discusses the different types of growth of tumor blood vessels and their implications on research and healthcare. The book is divided into three parts: the first one, General Mechanisms, discusses different vessel growth mechanisms, such as sprouting angiogenesis, non-angiogenesis dependent growth, intussusceptive microvascular growth, vascular co-option and vasculogenic mimicry. The second and third parts, entitled Clinical Implications and Therapeutic Implications are dedicated to translating recent findings in this field to patient treatment and healthcare. This book is a valuable source for cancer researchers, oncologists, graduate students and members of the biomedical field who are interested in tumor progression and blood vessels.
Tumour Angiogenesis is the first comprehensive book to cover all areas of this rapidly expanding research area. Each chapter is written by world experts in the field and topics covered include in vivo models, mechanisms, inhibition, and the role of macrophages, cytokines, proteases,extracellular matrix components, nitric oxide, prostanoids and oncogenes/tumour suppressor genes in angiogenesis. Other chapters examine the role of specific growth factors in angiogenesis - these include vascular endothelial growth factor, the basic fibroblast growth factor family, transforminggrowth factor-beta, tumour necrosis factor-alpha, platelet-derived endothelial cell growth factor/thymidine phosphorylase and pleiotrophin and related molecules. Clinical issues are addressed in chapters that deal with the prognostic and predictive value of tumour microvessel density and thetherapeutic significance of microregional blood flow. The two final chapters examine the feasibility of targeting tumour vasculature using either antibodies or gene therapy.
With treatment approaches and the field of neuro-oncology neuroimaging changing rapidly, this third edition of the Handbook of Neuro-Oncology Neuroimaging is very relevant to those in the field, providing a single-source, comprehensive, reference handbook of the most up-to-date clinical and technical information regarding the application of neuroimaging techniques to brain tumor and neuro-oncology patients. This new volume will have updates on all of the material from the second edition, and in addition features several new important chapters covering diverse topics such as imaging for the use of Laser Interstitial Thermal Therapy, advanced imaging techniques in radiation therapy, therapeutic treatment fields, response assessment in clinical trials, surgical planning of neoplastic disease of the spine, and more. Sections first overview neuro-oncological disorders before delving into the physics and basic science of neuroimaging and great focus on CT and MRI. The book then focuses on advances in the neuroimaging of brain tumors and neuroimaging of specific tumor types. There is also discussion of neuroimaging of other neuro-oncological syndromes. This book will serve as a resource of background information to neuroimaging researchers and basic scientists with an interest in brain tumors and neuro-oncology. - Summarizes translational research on brain imaging for brain tumors - Discusses limitations of neuroimaging for diagnosis and treatment - Presents advanced imaging technologies, including CT, MRI, and PET - Contains new coverage on Laser Interstitial Thermal Therapy, radiation therapy, clinical trials, and more
The formation of blood vessels is an essential aspect of embryogenesis in vertebrates. It is a central feature of numerous post-embryonic processes, including tissue and organ growth and regeneration. It is also part of the pathology of tumour formation and certain inflammatory conditions. In recent years, comprehension of the molecular genetics of blood vessel formation has progressed enormously and studies in vertebrate model systems, especially the mouse and the zebrafish, have identified a common set of molecules and processes that are conserved throughout vertebrate embryogenesis while, in addition, highlighting aspects that may differ between different animal groups. The discovery in the past decade of the crucial role of new blood vessel formation for the development of cancers has generated great interest in angiogenesis (the formation of new blood vessels from pre-existing ones), with its major implications for potential cancer-control strategies. In addition, there are numerous situations where therapeutic treatments either require or would be assisted by vasculogenesis (the de novo formation of blood vessels). In particular, post-stroke therapies could include treatments that stimulate neovascularization of the affected tissues. The development of such treatments, however, requires thoroughly understanding the developmental properties of endothelial cells and the basic biology of blood vessel formation. While there are many books on angiogenesis, this unique book focuses on exactly this basic biology and explores blood vessel formation in connection with tissue development in a range of animal models. It includes detailed discussions of relevant cell biology, genetics and embryogenesis of blood vessel formation and presents insights into the cross-talk between developing blood vessels and other tissues. With contributions from vascular biologists, cell biologists and developmental biologists, a comprehensive and highly interdisciplinary volume is the outcome.