Download Free Anatomy Ontologies For Bioinformatics Book in PDF and EPUB Free Download. You can read online Anatomy Ontologies For Bioinformatics and write the review.

This book provides a timely and first-of-its-kind collection of papers on anatomy ontologies. It is interdisciplinary in its approach, bringing together the relevant expertise from computing and biomedical studies. The book aims to provide readers with a comprehensive understanding of the foundations of anatomical ontologies and the-state-of-the-art in terms of existing tools and applications. It also highlights challenges that remain today.
Introduction to Bio-Ontologies explores the computational background of ontologies. Emphasizing computational and algorithmic issues surrounding bio-ontologies, this self-contained text helps readers understand ontological algorithms and their applications.The first part of the book defines ontology and bio-ontologies. It also explains the importan
This book introduces advanced semantic web technologies, illustrating their utility and highlighting their implementation in biological, medical, and clinical scenarios. It covers topics ranging from database, ontology, and visualization to semantic web services and workflows. The volume also details the factors impacting on the establishment of the semantic web in life science and the legal challenges that will impact on its proliferation.
This book provides a timely and first-of-its-kind collection of papers on anatomy ontologies. It is interdisciplinary in its approach, bringing together the relevant expertise from computing and biomedical studies. The book aims to provide readers with a comprehensive understanding of the foundations of anatomical ontologies and the-state-of-the-art in terms of existing tools and applications. It also highlights challenges that remain today.
This book provides a practical and self-contained overview of the Gene Ontology (GO), the leading project to organize biological knowledge on genes and their products across genomic resources. Written for biologists and bioinformaticians, it covers the state-of-the-art of how GO annotations are made, how they are evaluated, and what sort of analyses can and cannot be done with the GO. In the spirit of the Methods in Molecular Biology book series, there is an emphasis throughout the chapters on providing practical guidance and troubleshooting advice. Authoritative and accessible, The Gene Ontology Handbook serves non-experts as well as seasoned GO users as a thorough guide to this powerful knowledge system. This work was published by Saint Philip Street Press pursuant to a Creative Commons license permitting commercial use. All rights not granted by the work's license are retained by the author or authors.
This book constitutes the refereed proceedings of the First International Workshop on Data Integration in the Life Sciences, DILS 2004, held in Leipzig, Germany, in March 2004. The 13 revised full papers and 2 revised short papers presented were carefully reviewed and selected from many submissions. The papers are organized in topical sections on scientific and clinical workflows, ontologies and taxonomies, indexing and clustering, integration tools and systems, and integration techniques.
Ontology is the philosophical discipline which aims to understand how things in the world are divided into categories and how these categories are related together. This is exactly what information scientists aim for in creating structured, automated representations, called ‘ontologies,’ for managing information in fields such as science, government, industry, and healthcare. Currently, these systems are designed in a variety of different ways, so they cannot share data with one another. They are often idiosyncratically structured, accessible only to those who created them, and unable to serve as inputs for automated reasoning. This volume shows, in a non-technical way and using examples from medicine and biology, how the rigorous application of theories and insights from philosophical ontology can improve the ontologies upon which information management depends.
Artificial Intelligence federates numerous scientific fields in the aim of developing machines able to assist human operators performing complex treatments---most of which demand high cognitive skills (e.g. learning or decision processes). Central to this quest is to give machines the ability to estimate the likeness or similarity between things in the way human beings estimate the similarity between stimuli. In this context, this book focuses on semantic measures: approaches designed for comparing semantic entities such as units of language, e.g. words, sentences, or concepts and instances defined into knowledge bases. The aim of these measures is to assess the similarity or relatedness of such semantic entities by taking into account their semantics, i.e. their meaning---intuitively, the words tea and coffee, which both refer to stimulating beverage, will be estimated to be more semantically similar than the words toffee (confection) and coffee, despite that the last pair has a higher syntactic similarity. The two state-of-the-art approaches for estimating and quantifying semantic similarities/relatedness of semantic entities are presented in detail: the first one relies on corpora analysis and is based on Natural Language Processing techniques and semantic models while the second is based on more or less formal, computer-readable and workable forms of knowledge such as semantic networks, thesauri or ontologies. Semantic measures are widely used today to compare units of language, concepts, instances or even resources indexed by them (e.g., documents, genes). They are central elements of a large variety of Natural Language Processing applications and knowledge-based treatments, and have therefore naturally been subject to intensive and interdisciplinary research efforts during last decades. Beyond a simple inventory and categorization of existing measures, the aim of this monograph is to convey novices as well as researchers of these domains toward a better understanding of semantic similarity estimation and more generally semantic measures. To this end, we propose an in-depth characterization of existing proposals by discussing their features, the assumptions on which they are based and empirical results regarding their performance in particular applications. By answering these questions and by providing a detailed discussion on the foundations of semantic measures, our aim is to give the reader key knowledge required to: (i) select the more relevant methods according to a particular usage context, (ii) understand the challenges offered to this field of study, (iii) distinguish room of improvements for state-of-the-art approaches and (iv) stimulate creativity toward the development of new approaches. In this aim, several definitions, theoretical and practical details, as well as concrete applications are presented
As the amount of biological information and its diversity accumulates massively there is a critical need to facilitate the integration of this data to allow new and unexpected conclusions to be drawn from it. The Semantic Web is a new wave of web- based technologies that allows the linking of data between diverse data sets via standardised data formats (“big data”). Semantic Biology is the application of semantic web technology in the biological domain (including medical and health informatics). The Special Topic encompasses papers in this very broad area, including not only ontologies (development and applications), but also text mining, data integration and data analysis making use of the technologies of the Semantic Web. Ontologies are a critical requirement for such integration as they allow conclusions drawn about biological experiments, or descriptions of biological entities, to be understandable and integratable despite being contained in different databases and analysed by different software systems. Ontologies are the standard structures used in biology, and more broadly in computer science, to hold standardized terminologies for particular domains of knowledge. Ontologies consist of sets of standard terms, which are defined and may have synonyms for ease of searching and to accommodate different usages by different communities. These terms are linked by standard relationships, such as “is_a” (an eye “is_a” sense organ) or “part_of” (an eye is “part_of” a head). By linking terms in this way, more detailed, or granular, terms can be linked to broader terms, allowing computation to be carried out that takes these relationships into account.
The second edition of Instant Notes in Bioinformatics introduced the readers to the themes and terminology of bioinformatics. It is divided into three parts: the first being an introduction to bioinformatics in biology; the second covering the physical, mathematical, statistical and computational basis of bioinformatics, using biological examples wherever possible; the third describing applications, giving specific detail and including data standards. The applications covered are sequence analysis and annotation, transcriptomics, proteomics, metabolite study, supramolecular organization, systems biology and the integration of-omic data, physiology, image analysis, and text analysis.